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Abstract

Three mechanisms which can induce thermo-hydraulic oscillations at

near-critical and at super-critical pressures are distinguished and dis-

cussed.

Experiments show that low frequency flow oscillations are most pre-

valent in systems of practical interest. A quantitative formulation and

analysis is therefore presented concerned with predicting the onset of

these "chugging" oscillations as function of fluid properties_ system

geometry and operating conditions.

The problem is analyzed by perturbing the inlet flow, linearizing

the set of governing equations and integrating them along the heated duct

to obtain the characteristic equation. The latter is given by a third

order exponential polynomial with two time delays.

Conditions leading to aperiodic as well as to periodic flow

phenonema are investigated. The first pertains to the possibility of

flow excursion the latter to the onset of flow oscillation.

Stability maps and stability criteria are presented which_ previously,

were not available in the literature. They can be used to determine:

a) The region of stable and unstable operation and

b_ The effects which v_r_ous n_r_mp_r_ h_v_ _n _h_r n_m_r_na
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I. Research Oblectives

%

This research was conducted to determine the fundamental nature of

oscillation_ and of instabilities in the flow of cryogenic fluids with heat

addition.

The investigation was motivated by the fact that severe oscillations

have been experienced in rocket engines heat exchangers utilizing oxygen

and hydrogen at both subcritical and supercritical pressures.

The particular objectives of this investigation were:

i. To distinguish a number of mechanisms which may be respon-

sible for thermally induced flow oscillations at near cri-

tical and at supercritical pressures.

2. To present a quantitative formulation of the mechanisms

which appear to be most significant from the point of sys-

tem design and operation.

3. To predict the onset of these oscillations in terms of the

geometry and of the operating condition of the system.

4. To analyze the consequences of the theoretical predictions



2. Summary and Conclusions

i. Mechanisms leadin_ to Unstable Operation

Three mechanisms which can induce thermo-hydraulic oscillations at nean

critical and at supercritical pressures have been distinguish6d.-

One is caused by the variation of the heat transfer coefficient at the

transposed i.e. 3 at the pseudo-critical point.

The second is caused by the effects of large compressibility in the

critical thermodynamics region.

Finally, the third mechanism is caused by variations of flow character-

fstics brought about by variations of fluid density during the heating pro-

cess. lhe propagations of these variations through the system introduce

various time delays whichj under certain conditions 3 can cause unstable flow.

This last mechanism_ which induces low frequency oscillations_ was

investigated in detail because available experimental data show that this

type of flow oscillations is most prevalent in systems of practical interest.

4

2. Formulation of the Problem

The problem was formulated in terms of an equation of state and of

three field equations describing the conservation of mass_ energy and mo-

mentum.



3. The Characteristic E_uation

The characteristic equation is given by a third order exponential poly-

nomial with two time constants, (see Eq. V-15). It is expressed in terms of

. fluid properties, of system geometry and of operating conditions by means of

influence coefficients (see. Eq. V-16 through Eq. V-22).

The influence coefficients express the effects of the inlet flow

perturbation and of the space lag perturbation on the various pressure drops

of the system. By introducing various definitions for the average, for the

log.mean and for the mean densities and velocities it is shown that each

pressure drop is weighed with respect to a different velocity. This

result, which follows, from the integration of the governing set of

equations 3 i.e., from the distributed parameter analysis, could not have

been obtained from an analysis, based on "lumped" parameters. Consequently

the accuracy of an analysis based On this latter approach can be estimated

by means of the results obtained in this investigation.

The characteristic equation was used to obtain stability maps and

stability criteria which, previously, were not available in the literature.

The stability maps and criteria can be used to determine

a. The region of stable and of unstable operation and



The stability problem at intermediate subcooling will be considered in a

future report.

4. Excursive Flow Instability

It was shown that_ at supercritical pressuresj a flow system with heat

addition can undergo flow excursions because the hydraulic characteristics

of the s#stem are given by a cubic relation between the pressure and the

mass flow rate (see Eq° VI-20). The latter is a consequence of density

variations in the system.

This excursive flow instabilit_at supercritical pressures_is the

equivalent of the "Ledinegg" excursive instability in boiling systems at

subcritlcal pressures. This equivalence is supported by experimental data

(see Figure VI-I) which show that in both pressure regions_ the flow system

has similar hydraulic characteristics.

A stability criterion which predicts the onset of the excursive in-

stability was derived in terms of system geometry_ of fluid properties and

of operating conditionsj i.e. 3 of system pressure_ flow ratej inlet temp-

erature and power input (see Eqo VI-13). Various aspects of this type of

instability are discussed together with provisions required to prevent its
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It was shown further that, when the inertia can be neglected in a system

with low inlet subcooling then the characteristic equation reduces to a firs!

order exponential polynomial with one time delay (see Eq. VII-16).

For such a system the flow will be unconditionally stable if the

stability number N s (defined by Eq. VII-39) is larger than unity. If

N s is smaller than unity, stable operation is still possible if the angular

frequency of the inlet perturbation is larger than the critical one (given

in Eq. VII-40) or if the transit time is shorter ghan the critical one

(given by Eq. VII-41)'.

The region of stable and of unstable operation are shown in a stability

map (see figure VII-2) which can be used to analyze the effects that various

parameters have on the propensity to induce or to prevent flow oscillations

(see Section VII.3).

Although the analytical predictions have not yet been tested quantita-

tively, the trends predicted by this map and by the stability criterion

(see Eq. VII-22 or Eq. VII-29) are in qualitative agreement with experimental

observations (see Section VII. 3).

6. Flow Oscillation at High Inlet Subcoolin_

It was shown that when the effprt_ n_ :h_ _=_ e4m= _=I=_,= _=- _°



must go through a maximum at intermediate range, (see Section VIII-2).

7o Significance of the Results

The results of this analysis indicate several improvements in the design

and/or in the operating conditions which can be made to prevent the onset of

flow excursions or of flow oscillations. These are discussed in more detail

in relation to each type of instability (see Sections VI-2j Vll-3, and

VIII-2) •

It was shown that the predominance of a particular parameter results

in a particular wave form and in particular frequency (see Eq. VIE-40 and

Eq. VIII-17)o rhls result indicates that the primary cause of the instability

can he determined from the trace of flow oscillations.

Perhaps the" result of greatest significance revealed in the present

investigation is the similarity between the characteristic equation which

predicts "chugging" combustion instabilities and the characteristic equation

which predicts the thermally induced flow oscillations for fluids in the

near critical and in the supercritical thermodynamic region° Since it is

well known that "chugging" combustion instabilities can be stabilized by an

a_pro_riate servo-control mechanism, the results of this investigation

indicate that low frecuencv flow oscillations° at near crlt_cal and at



3. Recommendations

The recommendations listed in the four tasks below_ define the effort

needed to complete and to verify the results obtained in this investigation.

i. Verify the stability criteria based on the second and first order

exponential polynomials which have been derived in the course of

these investigations. For this purpose use available experimental

data for various fluids at subcritical and at supercritical pres_

sures,

2, From the characteristic equation given by the third order exponenti_

polynomial with two time delays (Eq. V-15) derive stability maps and

stability criteria applicable to the entire range of subcoolings.

Test these results against available experimental data.

3. Modify the characteristic equation to take into account the effects

of the entire flow system i.e._ of the flow loop. In particular in-

clude the effects of the inertia of the liquid in the storage tank

in the supply lines together with the flow and elastic characteristi

of these lines.



4. Nomenclature

MLT@ System of Units

with H defined by H = ML 2 T"2

Ac a cross sectional area of the duct LL 2

A a coefficient defined by Eq. VII-16

a = coefficient defined by Eq. VII-IO

a* - coefficient defined by Eq. VI-21

B s coefficient defined by Eqo VII-17

B_ = coefficient defined by Eqo VI-4

b " coefficient defined by Eqo Vll-ll

5* = coefficient defined by Eqo VI-23

C

C* =

Cp

D

f

F1

F2

coefficient defined 5y Eq, VII-12

coefficient defined by Eqo VI-23

specific heat of the fluid in the "light" fluid region [ HM-I@ -I

diameter of the duct[ L_

= friction factor

= Influence coefficient defined by Eq. V-5

" " Eq. V-6



I

i

_ifg

i21

kl

ke

L
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Mg

N s

P

Pex

Pol

_PI2

A Pbf

Enth ipy
" Latent heat of vaporization [HM'II

•" Inlet subcooling _IIM-I

•, coefficient of the inlet flow restriction

•= coefficient of the exit flow restriction

of the heated duct [LDTotal length

= Mass in the "heavy" fluid region

per unit area [ ML-2

= Mass in the "light" fluid region

Integrals given by Eq. IV-94# IV-97j IV-101j IV-107j IV-Ill.

per unit area EML "2

- Stability number defined by Eq. Vli-39

= system pressure CML'IT'2_

•" Pressure rise of the external system [ML-IT'2_

= Steady state pressure drop (SSPD) across inlet

orifice defined by Eq. 111-28 _ML'IT'2_

SSPD due to friction in the heavy "fluid" region I defined

by Eq. III-31 IML'IT "2 q

= SSPD due to gravity in the heavy "fluid" region I

defined by Eq. III-30 _ML'IT-2_



A P23

/% P34

q

R

s

S

T

t

u 1

Ug( )

• u
m

= SSPD due to friction of the light fluid region,

defined by Eq. IV-II2, _ML-IT-2]

= SSPD across exit flow restriction defined by Eq. IV-122. ( M )

= heat flux density _HL-2T "I _ _

= total heat input rate _HT "I

= _as constant [ L2T'20 -I

= Exponent of the inlet velocity perturbation [ T"I
= Stability criterion defined by Eq VI-28

= Period of the inlet velocity perturbation

= time

steady state velocity in the "heavy" fluid region LT "I

= SoS. velocity of the light fluid region defined by Eq. IV-28.(L)

S.S. velocity at the exit from the duct

defined by Eq. IV-31. (L)

= average velocity in the "light" fluid region

defined by Eq. IV-32. (L)

= Log mean velocity of the "light" fluid region

defined by Eq. IV-36 (L)

mean velocity of the "light" fluid region



vf

Vg

A Vig

W

= ve]ocity perturbation of the "light" fluid region

given by Eq. IV-30.

= specific volume of the heavy fluld [L3M -I

- s_ecific vclume of the "light" fluid [L3M =I_

= change ¢f specific volume in va_orizatlcn _L3M'I_

= total steady state mass flow rate (FF/-I)

length

6teen letters

&

_3"'[1

E2

J _

= heated perimeter I L_

= s_ace lag defined by Eq0 Iil-20

= perturbation of the s_ace lag

defined by Eq. Ii!-23.

= time lag_ defined by Eq. 111-18 [ T_

= _ = total transit time, defined by Eq. IiI_63

= critical transit time_ defined by Eq. VII-41o

amplitude cf inlet velocity _erturbation _ iT _I

characteristic reaction frequency_ defined by Eqo IV-21o



%

= angular frequency of the inlet velocity perturbation

= critical angular frequency defined by Eq. VII-40.

dimensionless exponent defined by Eq. VII-8.

T-I

Subscripts

0, l, 2, 3, 4 correspond to the locations of the duct

indicated on Fig. 11-2.
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I° Introduction

I.I The Problem and Its SiKnificance

A fluid in the vicinity of the critical point is an efficient heat

transfer medium because of the large specific heat and of the large co-

efficient of thermal expansion° Consequently, the demand for increased

efficiency of several advanced systems generated an interest in employing

fluids at critical and supercritica! pressures either as cooling or working

media° For example, nuclear rockets, power reactors, high pressure once-

through boilers, regenerative heat exchangers for rocket engines and a new

sea water desalinization process are designed to operate in the critical

and the supercritical thermodynamic region. These developments made it

necessary to obtain data on and to improve the understanding of the thermal

and the flow behavior over a broad range of fluid states°

A great number of investigations conducted for such a purpose have

revealed that, in the critical as well as in the supercritical thermo-

dynamic region, flow and pressure oscillations may occur when certain



Furthermore, in nuclear reactor systems flow and pressure oscillations may

induce divergent power oscillations leading to the destruction of the

entire system. Consequently, there is considerable practical interest and

incentive to investigate, quantitatively, the conditions leading to the

inception of these oscillations.

1.2 Previous Work

Severe pressure and flow oscillations were observed in experiments

performed w%th various fluid in the supercritical thermodynamic region.

Such oscillations were reported by Schmidt, Eckert and Grigull [I_, (ammonia);

Goldman [2, 3_, (water); Firstenberg_4], (water); Harden _5], (Freon-ll4);

Harden and Boggs _ , (Freon-ll4); Walker and }{arden [7-_, (water, Freon-11_,

Freon-12, carbon dioxide); }{olman and Boggs LS_, (Freon-12); Hines and

Wolf [9_ (RP-I and diethycyclohexane); Platt and Wood [I01 (Oxygen);

Ellenbrook, Livingood and Straight _iiI, (hydrogen); Thurston [12_, (hydrogen,

nitrogen); Shitzman [13, 141 (water); Semenkover _15_ (water); Cornelius and

Parker [16_ (Freon-ll4); Cornelius _17_ (Freon-ll4); and Krasiakova and

For a given fluid the characteristics (frequency and amplitude) of



and 380 psi peak to peak) were reported by Hines and Wolf [ 9_ for RP-i.

Three classes of pressure oscillations in the supereritical region

were observed in the experiments of Thurston [121; these were described as:

i) Open-open pipe resonance observed at medium and high flow rate.

This mode is associated with the fundamental wavelength of an

open-open pipe.

2) He!mhoi_z re_onance_ associated with a resonator Composed Df a

cavity connected to an external atmosphere via an orifice or neck.

3) Supereritical oscillations appearing usually at low flow rates°

Hines and Wolf _9_, however, report only two general types of oscilla-

tions: a high frequency (3000-75000 cps) oscillations audible as a clear

and steady scream and an oscillation with a lower frequency (600-2400 ¢ps)

which was audible as a chugBing or pulsating noise. The domlna_t frequencies

of these oscillations did not correspond to simple acoustic resonant fre-

quencies for the tubes.

Cornelius and Parker[16, 17_ describe in detail the two types of

oscillations and note that the frequency of the acoustical oscillations

decreases with temperature whereas the frequency of the chugging oscillations



Several investigators (12, 17 14) note that the appearanceof oscil-

lations occurs whenthe temperature of the heating surface exceedsthe

"pseudo critical" or the "transppsed" critical temperatures, i.e., the tem-

perature where the specific heat reaches its maximumvalue (see Figure AI in

Appendix A). Oscillations were not observed if the inlet temperature was

above this temperature. From this it was concluded that the mechanism for

driving the Oscillation occurred only when a "pseudo liquid" state was present

in some parts of the heated duct.

Firstenberg (4) attributes the oscillations to the variations of the heat

transfer rates to the fluid, whereas Goldman (2j 3) explains the oscillations

as well as the steady state heat transfer mechanism in the critical and super-

critical thermodynamic region as "boiling like" phenomena associated with non-

equilibrium conditions. According to Goldman, below _he pseudo-critical temper-

ature the fluid is essentially a liquid_ above this temperature it behaves as a

gas. At the pseudocritical temperature, the density gradient and the specific

heat reach maximum values giving an indication of the energy required to over-

come the mutual attraction between the molecules. The fluid in the immediate

vicinity of the heated wall is in a gas-iike State; whereas the bulk fluid may



li_e c!nsters into gas-like aggregates take place° Geldmanconsiders this

prc_ess to _e similar to the formation ol l.u_bles in liquids during bciling

at _u_critical pressures.

The conditions under which oscillations occur were summarized by

Gcldr;an as follc_s:

i) Eeat transfer with '_whistle" (ioeo_ with oscillations) occurs

eniy at high heat flu_ demsities and with bulk temperatures lower

than the pseudocriticai temperature.

2) A_ a given flow rate and i=!et temperature_ whistles occur at

higher flu_ densities for higher pressure levels.

3) At given flow rate and pressured Whistles occur at lower heat

flux densities for higher inlet te=_peratures°

4) At a given pressure and inlet temperature= whistles occur at

higher heat flux densities for higher flow rates.

5) Whistles can be produced with various lengths of the test section,

but the heat flux er inlet temperature must he increased to bring

it about if the tube is shortened,

Visual observation that boiling-like phenomena can exist at supercritica] i_

pressures was reported by Griffith and Saberski_i9]in _periments conducted Wi



[ l
Hines and Wolf

91 attribute the appearance of the flow oscillations

at supercritical pressures to the variations of liquid viscosity. They

note that a small change of temperature near the critical point results

"I

in a large change of viscosity. Consequently, a sudden increase in wall

temperature could cause a thinning of the laminar boundary layer due to

variation of the viscosity. Thinning of the boundary layer would result

in a drop of the wall temperature and a corresponding increase of viscosity.

This would cause a thicker boundary layer and produce another rise of tem-

perature, thus repeating the cycle. It was shown by Bussard and DeLauer _21_

Harry[ 22_ that a viscosity-dependent mechanism can induce an unstable
and by

flow in single phase flow systems when the absolute gas temperature is in-

creased by a factor of 3..6 or more.' Such flow oscillations were observed

al_3_ with helium flowing through a uniformly heatedby Guevara et

channel.

Harden and co-workers [5, 6, 7_ concluded from their experiments that

sustained pressure and flow oscillations appeared when the bulk fluid reached

a temperature a£ which the product of the density and enthalpy has its maximum

value° This explanation was, however, criticized by Cornelius [17_.

_16, 17 lJ postulate that both acoustical and the
Cornelius and Parker



a_tribu_e the appearance of chugging oscillations to "boiling-like" phenomena

and a sudden improvement of the heat transfer coefficient, An approximate

numerical s_lution verified the importance of the heat transfer improvement

in triggering and maintaining oscillations,

Of particular interest to the analysis presented in this paper are the

experimentalresultsofSemenkover,053andofKrasiakovaandGlusker lg3-

for water at 250 arm. For a constant power input Q to the system their data

show a pressure versus mass flow relation that is illustrated in Figure I-I.

it can b_ seen that for large v_lues of inlet enthalpy i_ there is a monotonL

_ncreas_ cf pressure drop with flow rate. At a certain lower value of i_

=he curve shows an infl_ctlon point. For still lower values of inlet enthalpl

there is a region where the pressure drop decreases with increasing flow rate

Such a pressure drop-flow rate relation occurs in boiling systems and gives

rise to an excursive type of instability which was analyzed first by Ledinegg

[2_J and by numerous investigators since _25 - 47_. Consequently, the data

=f /15, 18_ tend to confirm the similarity between ins tahilit ies _observed

during subcr!tlcal boiling and those observed at supercritical pressure

suggesting therefore a common mechanism,

1.3 Purpose and Outline of the Analysis

From the preceeding brief review of the present understanding of flow
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The analysis presented in this paper has four objectives:

I) To distinguish a number of mechanisms which may be responsible for

thermally induced flow oscillations at nearcritical and at supercritical

pressures.

2) To present a quantitative formulation of the mechanism which appears to

be most significant from the point of view of system design and operation

3) To predict the onset of these oscillatio_s in terms of the geometry and

of _he operating conditions of the system.

4) To analyze the consequences of the theoretical predictions and to suggest

imprevements whereby the o_set of these oscillations cae be eliminated.

The particular mechanism which is formulated and analyzed in this paper

is based on the effects of time lag and of de_slty variations. It is well

kr_¢wn that these effects can induce combustion instabilities in liquid pro-

pellant rocket motors as discussed by Crocco and Cheng _48_. It was shown

of time lag and of density variations can also induce unstable flow in

boiling mixtures at subcritical pressures. The suggested similarity o_

flow oscillations observed at supercritical pressures with those observed in

two phase mixtures at subcritical pressures prompts us to formulate and



_OJ and by Bour_ [513 in two respects: the formulation and the assumpt£ons -

are the same. In particular_ it is assumed that the density of the medium

is a function of enthalpy only. The effects of pressure variations are_

therefore neglected.* As noted by Wallls and Heasley _0] this assumption

results in the decoupling of the momentum equation from the energy and the

c_ntinuity equations. The momentum equation can be integrated then separately

af=er the velocity and density variations are obtained from the continuity and

the energy equations. Following Bour_ _513 the problem is formulated in terms

o[ _n equation of state and of three f_e!d equations describing the censer°

va_£cn of mass_ energy _nd mementum.

Apart from =he fact that the analyses ofWallis and Heasley _50J and

of Bour_ [5_ were derived to predict unstable flow in boiling two p_ase

_ixture3 the present analyses (concerned with flow oscillations at near-

critical and at supercrltical pressures) differs from tneirs in two respects_

I) the form of the constitutive equation of state is different_ 2) the

characteristic equation describing the onset of oscillations is different.

_em _Is characteristic equation_ we shall derive staoility maps and

sta_iiity inertia which, previously, were no_.._tavailable in the literature,

T_e outline of the paper is as follows. In C_apter II some general

comments are made regarding I) une nature of the thermally induced flow
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Chapter Vl which predicts the onset of an excursive type of instability E

supercritical pressures.* This excursive instability at supercritlcal

pressure is the equivalent of the so called Ledinegg excursive instabilit

for _ at subcritical pressures. The effect of time lags in induci_

flow oscillations is analyzed in Chapters VII and VIII which consider fi3

m

m

-!7

m_

i
[]

and second order expotential polynomials. Stability diagrams which pred:

the regions of stable and unstable flow in terms of the operating parame!

are given in these two chapters together with suggested improvements whe_

the onset of _cillations can be eliminated. The recommendations for

future work and the conclusions are given in Chapters IX _.

The status of the present understanding of thermodynamic phenomena that I

place in the critical thermodynamic region is discussed in Appendix A.

, 1.4 The Significance of the Results

Three mechanisms which can induce thermo-hydraulic oscillations at

supercritlcal pressures have been distinguished in this paper. One is

caused by the variation of the heat transfer coefficient at the transpose -

l.e._ pseudo critical point. The second is caused by the effects of far|

compressibility and the resultant low velocity of sound in the critical

region. Finally, the third mechanism is caused by the large variation o:

.

_Z
_Z



under certain conditions, can cause unstable flow. This last mechanism, that

induces lo__wwfrequency oscillations, is investigated in detail because ex-

perimental data show that this type of oscillation is most prevalent°

It is shown that at supercritlcal pressure unsteady flow Qonditions

both excursive and oscillatory can occur. A characteristic equation is

derived that predicts the onset of flow instabilities caused by density

variations in the critical and supercritical thermodynamic region. The

saze characteristic equatipn can be used to predict the onset of flow

instabilities in boiling at subcritical pressure, if the effect of the

relative velocity between the two phases can be neglected. Experimental

evidence shows that £_is effect becomes negligible at reduced pressures

above say 0.85. Consequently, at ne arcritical and supercritical pressures,

the chiracteristic equation, which is expressed in terms of system geometry

and cperative conditions, can be used to determine:

a) 1-he region of stable and unstable behavior.

b) The effect which various parameters may have on either promoting

or cn preventing the appearance of flow oscillations°

From this characteristic equation simple "rule of thumbs" criteria are

also derived based on the assumption that one or the other of the various



and Cheng[48]to predict co_bustlon instabilitiee of liquid propellant

ro=ket mctor_o* It is well established in the combustion literature th_

a serv=®control mechanism can be used to stabilize the low frequency co_

bustion ins=ability. The similarity of the charac=eristic equaticn_ i_,

therefore_ significant because it indicates that stable operation could

be insured also in the nearcrltical and in the supercritlcal regi_ by

using an appropriately designed servo-control mechanism.
Z
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II. General Considerations

II,I The System _Dd the Thermodynamic Process

In order to understand the mechanisms of the thermally induced flow

'oscillations at supercritical pressures, it is necessary to examine

briefly the system and the thermodynamic process.

The system of interest is shown in Figure II-Io It consists of a

fluid flowing through a heated duct of length i. Without loss cf

generality it will be assumed that the duct is uniformly heated at a

rate of Q. Two flow restrictions are located one at the entrance, the

other at the exit of the duct.

The thermodynamic process starts with the fluid at a supefcrltica]

pressure P, entering the heated duct with velocity _ . The temperature

_: of the fluid at the inlet is well below the critical temperature of the

fluid under considerations. As the energy is being transferred from the

heated duct to the fluid its temperature T, specific volume v_ and enthalpy

i, will increase. Thus, the temperature T 3, at the exit may be considerably

above the critical temperature. In a number of systems of practical interest

it can be assumed that this process takes place at an approximately constant

pressure_
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The present understanding of the thermodynamic properties and phenomena

at nearcritical and supercritical pressures is reviewed in Appendix Ao

It is shown there that at these pressures the fluid has the characteristics

of a liquid when the temperature is sufficiently below the critical one.

However_ if the temperature is increased sufficiently above the critical

temperature, the fluid will have the characteristics of a gas. This is

illustrated in Figure II-2 which is a plot of the specific volume and of

the temperature versus the enthalpy for oxygen at a reduced pressure cf

P =I.i_
r

It can be seen from this figure that at low enthalpies the Specific

volume is essentially constant, this is a characteristic of liquids. As

the enthaipy increases the specific volume increases approaching values

predicted by the perfect gas law. It can be seen also that this change

from a liquld-like state (region @ - @) to a gas-like state (region

0 " @)occurs over a transition region denoted by _ " @

on Figure 11-2.

It appears_ therefore, that at supercritical pressures the relation

between the specific volume and the enthalpy can be approximated by con-

sidering three regions: a liquid-like, a transition and a gas like region.
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approximation for describing the relation between the specific vciume

and the enthalpy. It is assumed, therefore_ that the "heavy" fluid (of

constant density) persists until the transition point is reached_ above

this point the fluid will have the properties of the =light _ phase. It

remains now to define this transition point°

In boiling at subcritical pressure the transition from the heavy to

the light phase corresponds to the onset ef bcilin_. Consequent!y_ it

will be assumed that in the nearcritica! region the trm_sition point

corresponds to the enthalpy at saturation temperature°

At supercritical pressures it will be assumed that the transition point

corresponds to the transposed critical point, ioe., to the pseudo critical

point which is defined as the point where C reaches its maximum value.
P

it is discussed in Appendix A that the locus of pseudo critical points

can be regarded as the extension of the saturation line in the super -

critical region.

II.2 _and Space LaK

it is of interest to consider now the timewise and spacewise des-

criptien of the process.*



and i i at the inlet to v3 and i 3 at the exit (see Figure II-3)o In

view of the "two-region" approximation we would note that the transition

from the "heavy" to the "light" fluid occurred whenthe properties (specifically

the entha!py) reached values that correspond to the transition point. The

time elapsed between the injection of the heavy particle in the heated duct

and [t_ transformation to the "light" fluid will be denoted as the tlm_e

It i3 _f interest also to consider the spacewlse description of the

_rccess. in this case the time lag mgst be replaced by the

which is a vectorial quantity indicating the location in the duct where

the transformation from the "heavy" to the "light" fluid takes place°

lee space lag is denoted 5y _ on Figure 11-3. Of course, the space

lag can he related to the time lag whenthe particle velocity is known,

llke in comhustion_ the location in the duct where the transformation
9,

takes place can te regarded as the source of the !igh{' fluid. It is

obvious that the flow properties in the region occupied hy the"ligh{ '

fiuld will defend upon the intensity of this source. If it is assumed

J! |!

that tSe injection rate of the heavy fluid is constant and that the time

a_ _Face lag_ were con_tanSthen the intensity of the source would also



amdpcpu!ation, of flow regimes, of the heat transfer coefficient, etc.

Consequently, the strength of the source mayfluctuate even whenthe in-

jectioz rate is kept constant. It is evident also that variations of

inlet velocity will introduce additional effects.

The nucleation and evaporation at subcritical pressures and the

transfermation of "heavy" clusters to "light" clusters at supercritical

pressures are rate processes that occur during and have an effect upon

the length of the time lag. Both of these transformation rates are af-

fected by the pressure, temperature and by other rate processes such as

the rate of energy transfer, flow rate, etc. If one of these factors

changesor fluctuates, the transformation rates will fluctuate also

resulting in a fluctuation of the time lag, i.eo, in the fluctuation

of the source° Since the source affects the flow conditions in the "light"

fluid regicn the flow in this region maybecomeoscillatory.

11.3 _rga_ized Oscillations

Oscillatiens of a system can be always produced if properly excited.

Such osciilations can be distinguished by a characteristic time, i.e°,

period if the process is periodic or by a relaxation time if it is
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at subcritical pressures, is not excited. The fluctuations at one _cint

do not have any effect on other fluctuations somewhere else in the system°

Since the integrated effects of these fluctuations vanish they de not pose

' a prohlemo
1

In the case of an organized oscillation the transformation process

will he excited by one or more coordinating processe_ such as the oscillation

of nhe inlet flow rate_ of the heat transfer coefficient_ etCo T-_e exciting

force for maintaining the oscillation c,f the coordinating process is in

turn prcvlded by the transforma=ion proceSSo For exampie_ in hciiing sys-

tems oscillations of pressure will affect the saturation temperature which

may induce oscillations in the rates of evapcrationo These in turn may

induce flow oscillations and provide the excitation force for maintaining

_he pressure fluctuations.
1

The fundamental character of organized oscillations is that a well

defined correlation exists between fluctuations at two different pcints
..... _ii

or instants° In other words that a disturbance is propagated_ ioeo_ dis =

placed in time a_d space through the system° When these organized oscil-

iations are present their integrated effect does not vanish whence the intere_-

in these osciiiaticnso Furthermore_ an oscillatory system may become unstab!_
=



11.4 The Mechanism of Low Frequency (Chugging) Oscillation at

Supercritical Pressures

It was noteH-In the preceding seeti-on that the characteristic of

organized oscillations is the propagation of disturbances through one system.

These disturbances can be variations of density, pressure, enthalpy, entropy,

etc. In this section we shall examine the effects which these propagations

may have.on the oscillating propensity of the system. In particular, we

shall consider the propagation of density disturbances and the effect of the

_ime lag, i.eo, of the space lag. The effects of pressure waves are discussed

in S_==ion Ii-7 together _ith the other mechmnisms which may induce f!o_7

oscillations in the nearcritica! and supercritical regions.

We note that the effect of the time lag in inducing combustion in-

stabilities was already analyzed by Summerfeld [52"_ , erocco and Cheng[48-_

among others, in boiling systems, this effect was already analyzed by

Profos [49_, Wallis and }{easley[50]and by Bour_ [5_. In these analyses

the flow was assumed to be homogeneous, i.e., the effect of the relative

velocity beEween the gas the liquid phase was neglected. A density prcpa-

gation equation, applicable to two-phase mixtures, which takes this effect

I_I_L_ a_co_t was forr_lu_a_ed in [53_ and sol,-ed in [.54, _5_
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the time a pressure wave propagates back and forth through the tank and

the feed sy3tem, then the pressure effects can be neglected. As discussed

in [48_ the process can be described then, with sufficient accuracy, by

s _

an exponentially decaying flow which is characterized by the relaxation

time constant i.e., by the line relaxation time. Therefore, the system

is stable because the steady state conditions will be eventually restored.*

Con_ider now the effect of a perturbed flow at the inlet of the heated

duct _2ee Figure 11-4). It is obvious that an oscillatory flow at the inlet

will induce an o_cillatory flow of the fluid in the duct. However, in

absence of a driving mechanism these oscillations Would also exhibit an ex-

ponential decay. We are looking for a mechanism whereby these flow oscil-
=

!acions at supercritica! pressures can be maintained. Like in boiling and

in combustion such a mechanism is provided by the propagation phenomena

_hich introduce different delay times in the response of the system. This

i_ shc_ in Figure 11-4.

it can be seen cn Figure 11-4 that an oscillatory inlet flow can induce

osci!la=ions of the space lag_ this is in accordamce with the discussion of

the preceding section. The onset of these oscillations is delayed however

by nhe lag time _'b_ because of the finite rate of propagation of the dis_



will induce oscillations of enthalpy and of density both delayed by a

certain delay time. With flow and density oscillating, the pressure drop

in the duct will also oscillate. If the conditions are such that the mini-

mumpressure drop in the duct occurs whenthe inlet flow is maximum,it is

apparent then that the oscillations can be maintained. It is also obvious

that whether or not this will occur will dependon the time lag _b and on

the delay times _ , _ , _ Whenthese delay times do no____t

dependupon "_ b' it can be seen that increasing the lag time _b has a

destabilizing effect. Since the time lag _ (see Figure II-4) depends

upon the enthalpy difference i 2 - i I, it can be concluded that, for this

particular case, a decrease of inlet enthalpy i I, i.e., that an increase

of _i21 has a destabilizing effect.

Fromthis qualitative description it can be already seen that at

supercritical pressures an unstable flow can be induced by the delayed

response of various perturbations. It remains now to advancea qualitative

description.

applying

pressures.

We shall do this in the following chapters by modifying and

the method proposed in _50, 51]J for boiling at subcritical



Following |48, 50, 51_ it will be assumedthat the variation of

pressures can be neglected. This is implied by the assumption that the

density is function of enthalpy only. It can be seen that this assumption

will be valid o_n_Iv if the variations of flow, density, enthalpy, etc. are

relatively small during the total time for propagation of a pressure wave

back and forth through the duct. Under this condition it can be assumed

that the various disturbances move through a uniform medium. It is ap-

parent a]_= t_:at this will be true only _f the rate of propagation of

_re_ure waves is considerably faster than the rate of propagation of the

disturbances. Hcwever, both in boiling systems as well as in the nearcritical

region the velocity of sound reaches very low values.* Consequently, it can

be expected that there will be a range of operating conditions for which

the assuzption that the properties do not depend upon pressure variatians

will not be satisfied. For boiling systems this limitation has been already

recognized and discussed by Christensen and Solberg [56] . In general,

it can be expected that the assumption will be satisfied in the low frequency

range, ice., in chugging oscillations. When the effects of pressure vari-

ations can be neglected then one can use the formulation put forward in _507

and carried out in [51_ for boilin_ systems at subcritical pressures.

i



velocity known the energy equation is integrated to obtain the time lag _b

as well as the rate of propagation of enthalpy disturbances. From the

enthalpy and from the equation of state we then obtain the density of the

medium. The differentiation between the nearcritical region and the

supercritical region is achieved by assigning the appropriate expression

to the equation of state. With the velocity and the density known, the

momentum equation can be integrated. Since the inlet disturbance is small_

the momentum equation is first linearized and then integrated to give the

characteristic equation.

Because of the linearization of the momentum equation the analysis

will be applicable only to cases where the effects of the instability are

not so strong to produce large amplitude oscillations. It can be used there-

fore to predict the conditions of incipient instability ,i°e., to determine

limits. As discussed in [481 andS50, 51_ linear effects and formu-stability

lations have been successful in predicting certain type of instabilities

("chugging" instabilities) in combustion and in boiling systems respectively.

A similar result could be expected, therefore, with the present formulation iJ

it is used to predict the onset of "chugging" instabilities at supercritical

pressures.



where L1 and L2 are polynomials with coefficients independent of the time

and where s is a root of the characteristic equation.

In general, the root s is a complex number; the real part gives the

amplification coefficient of the particular oscillatory mode, whereas the

imaginary part represents the angular frequency. Since the original per-

turbation is assumedto be of the form expL st ] ' a given oscillatory mode

will be stable, neutral or unstable depending upon whether the real part

of s is less, equal or greater than zero. A sufficient condition for the

system to be stable is therefore that the characteristic equation (Eq. II-i)

has no roots in the right half of the complex s plane.

Let us examinenowwhat information can be obtained from the character-

istic equation as well as the type of pragtical problems where this information
....... :_,,_!!i_-i_ _!_ _i_._ !_ ..... _ !

can be applied most usefully. Two such problems were discussed by _rocco and

Cheng_48_ in connection with the stability analysis of combustion systems.

The same discussion can be applied to the present problem.

In the first class of practical problems one is interested i_ deter-

mining whether a _ system with specified characteristics, i.e., with

speeSfied numerical coefficients is stable or unstable. This is most often

a situation that arises during the planning period, i.e., before the system



F:

parameters are changed. This is most often a situation that arises during

the design period because of the designer's need either to design a system

with sufficient safety margins or to modify a given unstable system in order

to make it stable. For this kind of problem Crocco and Cheng [48

note that it is advantageous to use the characteristic equation for deter-

mining the stability boundary of a certain system. On such a boundary,

expressed in terms of the operating characteristics of the system and of

the process, the oscillatory mode in question is neither stable nor unstable,

i.e., the real part of s vanishes for that mode. The stability boundary

divides therefore the space formed by the parameters of a given system into

different domains in which the system is stable on one side of the boundary

and unstable on the other° If by varying one parameter of the system the

stability boundary is shifted in such a way as to decrease the unstable

domain, the variation of the parameter has a stabilizing effect and vice

versa°

Following the standard procedure the stability boundary is obtained

from the characteristic equation by setting s = i_, where _ is the

frequency of the neutral oscillation. Upon separating the real and imaginary

parts of the characteristic equation one can eliminate the frequency _ ,

the resulting equation represents the stability boundary. Two such boundarie_



It is instructive to note first a general characteristic of oscillatory

systems. A necessary condition for maintaining oscillations is that enough

energy is supplied to the system at the proper frequency and phase relation

in order to overcome the losses due to various damping effects which are

_ways present in real systems. When the rate of energy supplied is control-

led by an external source and is independent of the fluctuations inside the

systems, the oscillations will build up when the energy is released at a

characteristic frequency giving rise to the resonance phenomenon. However,

when the system contains itself an energy sourc_ with a property that the

energy release depends upon a fluctuation inside the system, then an accidental

small disturbance in the system may interact with the source resulting in

oscillations of increasing amplitude. For this to take place it is necessary

that the energy from the source be fed to the disturbance during part of

the cycle.

It was discussed in preceding sections that the system which is analyzed

in this paper has the property that the energy release depends upon fluctu-

ations inside the system. Oscillations of the time lag and of the space lag

are ezamples of such fluctuations. We shall examine now other energy sources

and fluctuations which may be present in the system.



The same criterion can be used to expl_in a type of oscillation ob-

served at critical and supercritical pressures as well as in boiling

mixtures at subcritical pressures. In both systems the heat transfer co-

efficient is a strong function of pressure. Thus, pressure oscillations

may interact with the heat transfer coefficient inducing oscillations of

the latter. If these oscillations are in phase, the system may be thermally

driven and become oscillatory.

Another mechanism which may induce oscillations at both subcritical

and at supercritical pressures is caused by the large compressibility of

some parts of the system. At high pressures this is the section of the

system where the properties of the fluid pass through the nearcritical

region. At pressures below the critical point, this will be the section

of the system where subcooled boiling takes place.

Still another mechanism that can induce oscillations at subcritlcal

pressures is caused by the change of flow regime which can induce large

fluctuation of the mixture density. These in turn may induce both os-

cillations of the flow and of the heat transfer coefficient thus providing

the driving force necessary for maintaining the oscillations.

It can be expected that each of the mechanisms may be effective over





III. The "Heavy" Fluid Region

III.i The GoverninK Equation

For a "two-region" approximation the "heavy" fluid region extends

from the entrance of the heated duct to the transition point. Note,

that for a system with constant energy input, the location of this point

will mov_ along the duct when the inlet velocity and/or the inlet enthalpy

vary.

It will be assumed that the fluid in this region is incompressible

and that the thermodynamic properties are constant. The problem is formu-

lated by considering the three field equations describing the conservation

of mass, momentum and of energy in addition to the constitutive equation

of state describing the properties of the fluid.

For a one dimensional formulation, used in this analysis, the con-

tinuity, energy and momentum equations are given respectively by:

= 0
III-i



The constitutive equation of state is given by:

111-4

Equations IIi-i, 2, 3 and 4 are four equations which specify the four

variables_l_l_ and i in the "heavy" fluid region. These four

equations will be integrated to yield 7!_i _ and i as function of space

and of time. Thesewill be then used to determine the time lag and the

space lag.

111.2 The Equation of Continuity and the Divergence of the Velocity

In view of the assumption of an incompressible "heavy" fluid the con-

tinuity equation reduces to the divergence of the velocity

1 iti-5

whence upon integration we obtain



where the bar indicates steady state conditions°

111-3 The Energy Equation

With the fluid velocity given by Eq. 111-7, the energy equation becomes:

111-8

This is a first order partial differential equation whose solution can be

obtained by means of characteristics [60, 617 . The general solution Of

Eq. 111-8 is of the form:

111-9

where

= c, _.,. (_ _)= F-...2
III-i0

are solut_nsof any two independent differential equa_ons which imply

the relationships:



and

d_

dL
i

_._c III-13

In order to solve the problem it is necessary to specify the initial

and the boundary conditions. These will be specified by letting a particle

enter the duet with enthalpy iI at time "_i , (See Figure 11-3) thus,

I

111-14

With this boundary and initial condition, one obtains after integrating

Eq. 111-12 and 111-13 the following relations:

- 5(_ -z,)_t

-_ = _, ({--z,). __e ['l-e S

111-15

and

--L, +-
111-16



The first term on the right-hand side is the steady state term, whereas

the second one is the transient which accounts for the perturbation of the

inlet velocity.

111.4 The Time LaK and The Space La K

In Section 11-2 the time lag _b' was defined as the time required for

increasing the enthalpy of the fluid from the inlet value iI up _o the

enthalpy at the transition point i2 (See Figure 11-3). Consider now a

fluid which enters the duct at time _i and attains the enthalpy i2 at

time -_2; it follows then from Eq. III-16 that the time lag is given by:

III-18

which, in view of Eq. 111-13 can be also expressed as:

a Lil A Lzl iiI-19

de C+_

It can be seen that for a given system and at a given pressure the time

lag depends only upon the enthalpy difference (i2 - iI = _i%1 ) and the



For steady state operation _- O, whenceweobtain from Eq. 111-20

the steady state space lag _'--, thus:

_ 111-21

or

In view of Eq. 111-18 and 111-21, we can also express Eq. 111-20 as:

SL- - -<"_J,

111-22

AI )= fA 111-23

Several comments are appropriate.

I) Equations 111-18 and 111-21 indicate that for steady state, i.e.,

when _ - 0 the time lag _b correspond§ to the transit time.of a fluid

particle through the "heavy" fluid region.

2) Equation 111-22 shows that the response of the space lag to a

variation of the inlet velocity is delayed by _ _m_ n_n_ =n,,=1 _n _°



The time lag _b was called there the "evaporation time constant" [49]

111.5 The Momentum Equation

The momentum equation can be integrated now since the velocity in

and the boundaries of the "heavy" fluid region have been determined. With

the boundary conditions taken as

the integrated momentum equation becomes

_1 o

where we have taken into account the assumption that the density in the

"heavy"fluid region is constant. In view of Eq. III-5, III-6, 111-7, and

III-23, the integrated momentum equation yields:



111-27

Weshall" consider now the pressure drop across the inlet orifice.

Defining by ki a numerical coefficient that takes into account the effect

cf the geometry of the restriction and of other losses like vena contracta,

etc°, we can express the inlet pressure drop across the inlet orifice by:

which, upon linearlzation can be expressed as:

s_

111-29

We define now the steady state values of the pressure drop due to



and due to the inlet orifice by:

111-32

In view of these three relations and upon substituting Eq° 111-29

in Eq. 111-27, we can express the pressure drop in the "heavy" fluid

region by:

111-33

where

st

III-34

and

_A = ee (_-e )
S ITI-q5



varying space lag. Equation 111-35 indicates that this last effect is

_b" Weshall proceed nowwith the analysis of thedelayed 5y time lag

"light" fluid region.



IV The "Light" Fluid Region

IV.I The Governing Equation

For a "two region" approximation the "light" fluid region extends

from the transition point to the exit of the heated duct. The problem

is formulated again in terms of three field conservation equations and

of a constitutive equation of state. However_ in contrast to the "heavy"

fluid the density in the "light" fluid region is function of enthalpy

and of pressure. It was discussed in Chapter II that for "chugging"

oscillations_ the effects of pressure variations can be neglected.

Consequently_ the density will be a function of enthalpy only.

The "light" fluid region is describedj therefore_ in terms of the

continuity equation

_- O IV-I

of the energy equation
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or

IV-4

when expressed in terms of the specific volume _O"

Equations IV-l, 2, 3 and 4 are four equations in terms of four

variables?, _ ,_ and i. They are applicable to the "light" fluid

region at supercritical pressures. They can be also applied to the

two phase flow region at subcritical pressures if, and only if, the

relative velocity between the phases can be neglected.

It is emphasized .here that the form of the energy and the form of

the momentum equation, as given by Eq. IV-2 and Eq. IV-3, are correct

if the relative velocity between the phases is either zero or its

effect is negligibly small. If such is not the case, then both Eq. IV-2,

and Eq. IV-3 must be modified.

It was discussed in Section 11-5 that at high pressures, say above

0.85 of the reduced pressures, the effect of the relative velocity is



mixture in the nearcritical region. The differentiation between the

"light" fluid and the two phase mixture will be realized by assigning

the appropriate expression to the constitutive equation of state. This

will be done in the section that follows.

IV.2 The Equation of State

For the "light" fluid the relation between the specific volume and

the enthalpy can be obtained either empirically, i.e., from experimental

data or it can be approximated by an equation of state such as the per-

fect gas or the van der Waals' equation etc. It was noted in Section II.i

that for oxygen the perfect gas equation predicts with sufficient accuracy

the relation between the specific volume and the enthalpy. Since this

fluid is of primary interest to this investigation, the perfect gas

equation will be used as the constitutive equation of state for the "light"

fluid at supercritical pressures.

Assuming a constant pressure process we have for a perfect gas the

following relations

|

|
_m

|
|



For a "two-region" approximation the boundary condition for the "light'

fluid region is given by:

We obtain then the equation of state for the "light" fluid region by

integrating Eq. IV-8 subject to the boundary condition given by Eq. IV-8,

thus:

(i --_z I IV-IO

We shall derive now the equation of state for the two phase mix-

ture in the nearcritical region. We recall first that the quality x,

of a two phase mixture is defined by:

_ GL_

d++
IV-II

where Gg and Gf are the mass flow ra__s of the vapor phase and of the

liquid phase respectively. We recall also that the specific volume

ill



Where _7"f, if and glT"' i are the specific volume and the enthalpy ofg

the liquid and of the vapor respectively.

We obtain then the equation of state for the two phase mixture by

eliminating the quality x, between Eq. IV-12 and Eq. IV-13, thus:

IV-14

s

Where _'%_ fg _ . %/f, and where _ ifg is the latent heat of vapori-g

zationo Differentiating Eq0 IV-14 we obtain for the two phase mixture:

IV- 15

which can be compared to Eq. IV- 8 applicable to the "light" fluid at

supercritical pressures.

It is important to note that both, the equations of state for the

"light" fluid at supercritical pressures, i.e., Eq. IV-10, and the equation

of state for a two-phase mixture at subcritical pressures, i.e., Eq. IV-14,

are of the same form, i.e., both can be expressed as:



IV.3 The Equation of Continuity and the Divergence Of Velocity

Several methods are available [49, 50, 51, 62] for determining the

velocity in a boiling mixture. Any of these could be modified and used

to determine the veloclty in the "light" fluid region. In what follows

we shall use the method of Bour_ [51] i

As in the "heavy" fluid region we shall determine the velocity by

integrating the divergence. However, in contrast to the "heavy" fluid

region where the divergence is given by Eq. 111-5, the divergence in the

"light" fluid region is not zero but is obtained from Eq. IV-l, thus:

¸
In order to integrate the divergence it is necessary to evaluate

the right-hand side of Eq. IV-17. Following Bour_ this can be done by

means of the energy equation.

Since the density is function of enthalpy only one can write

_ _--f= _-?L_ _-_ --9} J IV- 18



IV- 20

We shall define now the reaction frequency* __ by:

Jl = __ ---_ _Tj_ _v._,

It follows then from Eq. IV-8 and Eq. IV-21 that the reaction frequency

for the "light" fluid in the supercritical region is given by:

whereas it follows from Eq. IV-15 and Eq. IV-21 that for boiling at sub-

critical pressures the reaction frequency is given by:

-fl _
IV-23



The physical significance of this equation is simple: the divergence

of the velocity in the "light" fluid region is equal to the volumetric

rate of formation of the "light" fluid per unit volume of space.

In order to integrate Eq. IV-24 it is necessary to specify the

boundary conditions; these are given by considering the velocity in the

"heavy '= fluid region, i.e., Eq. 111-7. The boundary condition for

Eqo IV-24 is therefore:

IV-25

whence upon integration of Eq. IV-24, we obtain for the velocity in the

"light" fluid region the following expression:

IV-26

We note that Eq_ IV-26 with _ given by Eq. IV-23 is the velocity

in the two phase boiling mixture, as such it was used already in(49_50_51and 62.)

It is instructive to examine further Eq. IV-26, which_ by means of
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IV-28

We can rewrite then Eq. IV-27 as:

IV-29

where the time dependent perturbation of the "light" fluid is given by:

$

It can be seen from Eq. IV-29 and IV-30 that the flow in the "light"

fluid region is affected by both the inlet perturbation as well as the

perturbation of the space lag. This last perturbation is delayed by the

time lag _ (see Figure II-4).

We shall define now several steady state relations which shall be

used in following chapters.

&

!
!



by:

The lengthwise average velocity in the "light" fluid region is defined

IV-32

whence from Eq. IV-28 we obtain:

Z IV-33

From Eq. IV-31 we have:

IV-34

Substituting this relation in Eq. IV-33 we have the following expressions

for the average velocity:

5 Iv-35
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A fourth relation of interest to this investigation can be obtained

from the conservation of momentum G_and the definition of the log mean

density° If we denote by _ 3' the density of the fluid at the exit from

the heated duct, then the Io$ mean density in the "light" fluid region is

given by:

IV-37

The mean velocity, based on the log mean density, is then obtained by

considering the mass flux density, i.e., the momentum G, thus:

<e.
IV-38

which, in view of the preceding relations can be expressed also as:



and IV-16 in Eq. IV-2 we can express the energy equation as:

IV-40

Taking the enthalpy i 2 at the transition point for reference and in view

Gf the definition of the reaction frequency _ , given by Eq. IV-21,

we can rewrite Eq. IV-36 as:

+ [ _11__ _ _C_I_-[_) = _ .rz.(i-c,.)
IV-41

The initial and boundary conditions for the energy equation are de-

termined by considering the conditions at the transition point (See Figure

II-3)_ they are given therefore by:

I i

= 0 _t f -r_

^ .,i- =- xl_'.'__ 7". .+_ /I-_

IV-42

=
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IV-44

J

whence :

IV-45

and

Integrating first Eq. IV-46 and taking into account the initial con-

ditions given by Eq. IV-42 we obtain:



In order to integrate Eq. IV-45 we note that it is of the form of:

IV-49

whose solution is:

-_n_ -_
where _ =_ _ __

The integral of Eq. IV-45 is therefore:

IV-50

le + _ e
/L _-.%

(_-A÷me ) - d, IV-51

which, in view of Eq. IV-48, can be expressed as:

_-A .__e-s=_]=
Ci



Substituting Eq. IV-53 in Eq. IV-51 we obtain after some re-

arrangement :

e

which_ in view of Eq. 111-25 and Eq. IV-3_ can be expressed as

n
m

IV-55

By substituting Eq. IV-48 in Eq. IV-55 we obtain the solution of the

energy equation for the specified initial and boundary conditions_ thus



Expanding and retaining only the first power of _ we obtain after some

rearrangement

_,_ ___ _, -58

If we let the perturbation go to zero_ i.e._ _ = O, we obtain from

Eq. IV-58 the enthalpy for steady state operation_ thus

, __ t-_-r)
L -_L. -"

!
IV-59
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IV-66

m

B

z

|
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which_ in view of Eq. IV-21_ can be expressed also as:

Denoting by Q =_ the rate of energy transfer to the entire

duct and by-_q-'_ the mass flow rate_ we can express the total energy

balance in steady state as:

,i /

Substituting this relation in Eq. IV-61 and in view of Eq. III-i,8 we

obtain the following expression for the residence t_me in the heated

C7

IV-61

IV-62



state, i.e., by Eq. IV-16_ which, in view of the definition of the re-

......

action frequency__, given by Eq. IV-21, can be expressed also as:

IV-64

Since the enthalpy in the "light" fluid region is given by the

solution of the energy equation, i.e., by Eq. IV-56 we can express the

density as function of time or as function of time and space. Thus by

substituting Eq. IV-6_in Eq. IV-47 we obtain:

%
IV-65

whereas by substituting Eq. IV-64 in Eq. IV-56 we obtain:

m

-s(t-n)
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IV-66
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or_ in view of Eq. IV-65_ it can be transformed in

m
IV-68

Using again the binomial expansion and retaining only the first power

of _ we can express Eq. IV-67 as:

IV- 69

Similarly_ we can expand Eq. IV-68 and express it as:

IV-70



We shall define now several steady state relations which will be

used in the following sections.

By letting _ = L in Eq. IV-71 we obtain the density at the exit

from the heated duct thus:

_,+ _ (L-T) _3 Iv-72

where we have taken into account Eq. IV-31.

We shall define now the average density in the "light" fluid region

by:

whence from Eq. IV-71 we obtain:



IV-75

Wehave already defined the log mean density by:

%
IV-76

where _ is given by Eq. IV-72.

A fourth expression can be obtained from the definition of the

average velocity<_ given by Eq. IV-35 and the momentum _ We

can express therefore a mean density_ based on the average velocity_

by:

_ Q d_ = 2Q

"L
IV-77



where the density perturbation is given by

which, in view of Eq. IV-30, can be expressed also as:

IV-79

IV-80

By letting _ =_ in Eq. IV-79 we obtain the density perturbation

at the exit from the heated duct, thus

IV-81

It can be seen from the preceeding equations that in the "light"



With the density and the velocity in the "light" fluid region

given by the expressions derived in this section and Zn Section IV-3

respectively_ we are in the position to integrate the momentum equation.

IV.7 The Momentum Equation

In order to integrate the momentum equation it is necessary to

specify the boundary conditionsj these are given by:

whence the integrated momentum equation becomes:

IV-83

The expressions for the density and the velocity which should be

substituted in this equation are given by Eq. IV-78 and Eq. IV-27_



Substituting Eq. IV-78 and Eq. IV-27 in Eq. IV-84 and retaining only

the first power in'_ we get:

)
.0- _,

IV-85

In view of the definition of the average density and of the velocity

perturbation given by Eq. IV-75 and Eq. IV-3J. respectively_ the inertia

term can be expressed as:

IV.7.2 The Convective Acceleration Term

The convective acceleration term in Eq. IV-83 is given by:

f 5,_

_ilil,

_,i!il
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IV-88

It is of interest to examine the physical significance of the various

terms.

If we let _ = 0 in Eq. IV-8_ we obtain the steady state acceleration

pressure drop _ _ which_ in view of the definitions given in Sections

IV-3 and IV-6_ can be expressed as:

m
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IV-9u

J

It shows_ therefore_ the influence of the variation of the space lag on

the acceleration pressure drop in the "light" fluid region.

In view of Eq. IV-89 and Eq. IV-30j the third term in Eq. IV-88

can be expressed as

IV-91

It expresses_ therefore_ the influence of the velocity perturbation in

the "light" fluid region on the acceleration pressure drop.

The last two terms in Eq. IV-88 stem from the density perturbation

term in Eq. IV-70_ i.e., from



=

The third term in Eq. IV-88_ i.e._ the first term on the right hand side

of Eq. IV-92 can be expressed in terms of Eq. IV-89 thus

IV-93

It shows_ therefore_ the effect of the variation of the velocity in the

"light" fluid region on the density and, therefore_ on the acceleration

pressure drop in that region.

The physical meaning of the last term on Eq. IV-88_ i.e._ Eq. IV-92

is not as clear as that of the other terms in Eq. IV-88. An insight can

be gained however_ by considering the upper and lower limits of the

integral

I. IV-94



which_ in view of Eq. IV-89_ can be expressed as

-- -s(1:_-n)
_n- z_ e

We note that a simple expression can be obtained by setting _)= _I

in Eq. IV-94_ this approximation results in the following expression for

the integral 14:

_o. c_.m(_-_le _,
_-.-_ L4_

m!

-s('_- r, )
e
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IV-97

The physical meaning of the integral 14 is now clear: it expresses the

effect of the perturbation of the inlet velocity on the density (see

Eq. IV-69) andj therefore_ on the acceleration pressure drop in the

"light" fluid region. This effect is delayed by a delay time equal to
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IV-98

,,qLurc the steady state acceleration pressure drop _ P_ is given by

'Eq. IV-89.

IV.7.3 The Gravitational Term

The grav'_'.tational term in the momentum equation is given by

,L

IV-99



where

l

5

IV-101

The physical meaning of the various terms is as follows:

We obtain the steady state gravitational pressure drop by letting

= _ in Eq. IV-IO0_ thus in view of the definitions given by

Eq. IV-36 and IV-75 we have:

The second term in Eq. IV-102 can be expressed bv means of Ea.

IV-i02
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It expresses_ therefore_ the effect of space lag variation on the

gravitational pressure drop.

The third term in Eq. IV-100 can be expressed by means of Eq. IV-39_

IV-75 and IV-103_ thus

s+

j
5

_ 5 -a_

where the mean velocity _ is defined by Eq. IV-39. This term then

represents the effect of velocity perturbation in the "light" fluid

region on the density and therefore on the gravitational pressure drop

in this region.

The physical meaning of the last term in Eq. IV-100 can be ex-

plained again by expressing the integral 14 in Eq. IV-101 by its, upper

and lower bounds (see Appendix C)



IV-f06

t

A simple expression for the integral 14 can be obtained by using the same

approximation which was used in deriving Eq. IV-97. Thus, if we let

_,/_(___,/_ i_ _q _V-_Ol.eobtainafterintegratio,thefoll_Ing

- -5 (_s-z,)
approximation -_ _ _ _n 03

_-_ .n. _,

- s (_:_--c,) IV-lOT

By comparing Eq. IV-107 with Eq. IV-106 it can be seen that I4. has a value

wh_.ch falls between the two bounds given by Eq. IV-106. The last term in

Eq. IV-IO0 expresses therefore, the effect of the inlet velocity perturbation

on one density (see Eq. IV-79) and on the gravitational pressure drop in

the "light" fluid region. Furthermore, this effect is delayed by a time

delay equal to T_orr_-l, dependlng on whether we use the upper or lower bound

for the Integral 14.

By substituting Eq. IV-102, IV-I03, IV-I04 in Eq. IV-IO0 and by

expressing the integral IA in terms of the Inte_med_t_ .nnrnv_m._m.

4
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L-7 _

IV-108

Z #:

where the steady state gravitational presure drop is given by Eq.

IV-I02.

IVo7.4 The Frictional Pressure Drop

The frictional term in the momentum equation is given by

t

Substituting Eq, IV-78 and IV-27 in Eq. IV-I09 and retaining only the

IV-I09



where the integral 15 is given by
L

IV-ill

The physical meaning of the various terms is as follows.

We obtain the steady state frictional pressure drop by letting

_ = 0 in Eq. IV-IIO, thus in view of Eq. IV-35 we can write

_ : _l_-_/e,a,[_, ___c_-_l-_:

p

IV-II2

The second term in Eq. IV-II0 can be expressed by means of Eq. IV-II2

and Eq. 111-22 thus:



=

and Eq. IV-35 thus

)__) S <_4_> IV-ll4

This term expresses therefore the effect of velocity perturbation in the

"light" fluid region on the frictional pressure drop.

Similarly the fourth term in Eq. IV-IIO can be expressed as

IV-II5

In view of Eq. IV-79 this term shows the effect of the velocity

perturbation in the "light" fluid region On the density perturbation and

therefore on the frictional pressure drop in this region.

The physical meaning of the last term in Eq. iV-ll0 can be explained

again by expressing the integral 15 in Eq. IV-Ill by its upper and lower



which in view of Eq. IV-lib and IV-35 can be expressed as:

IV-lIT

A simple expression for the integral 15 can be also obtained by using the

same approximation that was used in deriving Eq. IV-97 and Eq. IV-I07.

Thus, if we let _,/_l_J = _ /_5 in Eq. iV'Ill we obtain after integration

-- - s Iv:r,)

IV-l18

The last term in Eq. IV-IIO expresses therefore the effect of the inlet

velocity perturbation on the density (see Eq. IV-79) and therefore on the

frictional pressure drop in the "light" fluid region. Furthermore this

effect is delayed by a delay time equal to _& or (_-_I) depending on
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IV-ll9

where the steady state frictional pressure drop Z_ is given by

Eq. IV-II2o

IV.7.5 The Exit Pressure Drop

We can include the effect of the exit pressure drop in the momentum

equation. For this purpose we shall define by _£ the coefficient for the

exit losses_ then the exit pressure drop can be expressed as

By substituting Eq. IV-69 and Eq. IV-27_ both evaluated at % = _, and



Weobtain the steady state exit pressure drop by letting

in Eq. IV-121 thus

--6

IV-122

Consequently Eq. IV-121 can be expressed as

m

IV-123

-s(r_,--c,)
e _u I

The second term in Eq. IV-123 represents the effect of velocity

perturbation in the "light" fluid region on the exit pressure drop.

The last two terms in Eq. IV-122 can be expressed as

_CT.-,. l t'l, - ._-'r.,) r,. "1



where we have taken into account Eq. IV-81. Consequently the last two

terms express the effect of the density perturbation on the exit pressure

drop.

IV.7.6 The Integrated Momentum Equation

By adding Eq. IV-86_ IV-98_ IV-108_ IV-II9 and IV-123 we obtain the

integrated momentum equation for the light fluid region thus

IV-125



By adding the momentumequations for the "heavy" and "light" fluids

we shall obtain the momentumequation for the system whencethe characteristic

equation for predicting the onset of unstable flow. This will be done

in the chapter that follows.

IV.8 Comparison With Previous Results

Before we proceed with the derivations of the characteristic

equation_ it is of interest to compare the results derived in this chapter

with those reported previously in _49_ 50_ 513 53_ 55_. In this section

we shall make comparison with the results of _49, 50 and 51] whereas in

the section that follows we shall compare the present results to those

of [53j 55_.

It was already discussed in Section 1.3 that the assumptions made

in the present analysis as well as the general formulation of the problem

are the same as those reported previously the Wallis and Heasley [50J and

Bour_ [51_ for boiling_ two phase system. It was also noted in Section

1.3 that the present analysis differs from those reported in [49_ 50 and

51_ in the following respect: l) the constitutive equation of state is

different and 2) the characteristic equation is different.
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to be taken into account then the momentum and the energy equation_ i.e._

Eq. IV-2 and IV-3 must be modified. Furthermore_ a diffusion equation

should be added to the field equations describing the process. An in-

vestigation along these lines will be reported separately.

If, in the bToiling region_ we express the reaction frequency __. by

means of Eq. IV-23_ then the density given by Eq. IV-6_ becomes identical

to that derived first in (49] and to those in (50_ 51_ 55] using different

approaches. We shall examine now Eq._IV-66 which can be expressed also

i

IV-126

whencej in view of Eq. IV-65j and IV-30_ the perturbation can be written

as:

t rV-12_



to Fq, 38 in the paper by Wallis and Healsey (50) derived using a different

approach,

We can insert Eq. IV-65 in Eq. IV-126 and express the latter as

IV-129

tf _he density terms which appear on the right hand side of Eq. IV-129

are aoprcximated by ,,h_ steady state relation, i.e. by

as w_s done in (51) we obtain

IV-130

C(-. I._ll_l _', $ (s-.o) t_ll_#
IV-131

which Is equivalent to Eq. 5 Appendix A of Boure's report (51),

Apart from the difference in the equations of state used in this

a_ly_is, the difference between the present results and those of (50, 51)

i_ in the handling the momentum equation. In (50) the momentum equation
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In the present analysis we have introduced various definitions for

the mean_ for the average and for the log mean density as well as for the: vel=

ccitle_ in the "light" fluid region which enabled us to give physical

interpretation to the various terms in the integrated momentum equation.

It will be seen in what follows that these relation_ together with the

approximation used in deriving Eq. IV-97_ IV-I07 and IV-llSjresult in a

characteristic equation given by an exponential polynomial of the third

order. It will be seen also in what follows that these results will

enable us to derive stability criteria and stability maps which_

previously_ were no___!available in the literature.

IV.9 The Density Propagation Equation

It is of interest to note an alternate way for determining the density

perturbation.

If we substitute Eq. IV-21 in Eq. IV-19 we obtain:

9L
IV-132



This void propagation equation takes into account the effect of the

relative velocity between the two phase as well as the effect of the

non-uniform velocity and concentration profiles in the two phase mixture.

It can be easily shown that if these effects are neglected the void

propagation equation can be reduced to Eq. IV-132.

We note also that Eq. IV-132 is of the same form as the continuity

for a given species in a multicomponent_ chemical reaction system. In

chemical kinetics the source term in Eq. IV-132 is referred to as the

reaction frequency. It is for this reason that in C53_ 551 the term

was called the "characteristic frequency."

Finally_ we note that Eq. IV-132 is a first order partial differential

equation which can be solved by the standard method used in Sections 111-3

and IV-4. Indeed following this procedure_ used already in [53 and 55)_

one can derive Eq. IV-66 and Eq. IV-68.
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V. The Characteristic Equation

V,I. The Momentum Equation for the System

The momentum for the "heavy" fluid is given by Eq. III-33_ whereas

that for the "light" fluid is given by Eq. IV-125. By addlng these two

equations_ we obtain the momentum equation for the system.

We note that if the downstream pressure P4_ is constant we can ex-

press the overall pressure drop_ i.e._ the external pressure drop of the

system as a steady state term and a pressure perturbation caused by the

inlet flow. Thus

V-I

where the aecDnd term on the right hand side is determined by the pump

characteristics and has a negative value.

By adding Eq. III-33_ Eq. IV-125 and Eq. V-I we obtain the integrated

momentum equation for the heated duct_ thus

V-2
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We obtain the steady state pressure drop for the system by letting

the _erturbations _o to zero, thus

V-3

By subtracting Eq. V-3 from Eq. V-2 we obtain the perturbed form of

the momentum equation_ thus
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The formulation is now essentially complete because Eq. V-4 is the

expression which gives the response of the system to the initial flow

pertubation as function of the influence coefficients defined below.

lhe influence coefficien_F I and F 2 represent the mass of the "heavy"

fluid and of the "light" fluid respectively_ thus



The coefficient F3 describes the effect of the inlet flow variation

on the pressure drops in the "heavy" fluid region_ thus

4 V-7

This coefficient_ which is well known from studies of the transient

response of single phase flow sy_tems_ has always a positive value.

The coefficient F4 shows the effect of the velocity perturbation in

the "light" fluid region on the pressure drops in that region_ thus

Vo8

It is of considerable importance to note that each pressure drop is

differentiated and is weighed therefore by a different velocity. This

important result is a consequence of the integration of the momentum

equation_ i.e._ of the distributed parameter analysis. We note that in

the "lumped" parameter analysis the three pressure drops in Eq. V-8 would



V-9
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and

It can be seen from Eq. IV-69 and Eq. V-2 that these two coefficients acecuu!

fer th_ effect of the density perturbation on the various pressure dro_s in

=he "light" fluid regien. Note_ that the density perturbation depends on bol

_[_) an@ _--i • Two observations are noteworthy. First, the coefficient F5

shows that the effects of the velocity perturbation on the "light" fluid

regicn are _eighed by various velocities. This, again, is a consequence of

the distributed parameter approach. Two_ the exponential which multiplies

the ceefficient F6 indicates that the effects of the inlet perturbation are

delayed by the delay time T_-_i .

Finally the coefficient F7_ defined by

11- ) vii



the system. This result could not have been anticipated in a "lumped"

parameter analysis. Indeedj in several studies of boiling systems using the

"lumped" parameter approach these terms were introduced and retained in

the analysis. In view of the foregoing) the results and conclusions based

on such formulations can be considered as spurious.

By introducing Eq. V-5 through V-II in Eq. V-4 the perturbed momentum

equation for the heated duct can be expressed by

-p
3,J_- J-Jh_

- s r.,)

V-12

Before deriving the characteristic equation it will be instructive

to express the perturbations in Eq. V-12 in terms of the perturbations of

the inlet flow and of the space lag. Taking into account Eq. IV-30 we can

express Eq. V-12 as



variation of the space lag. This latter effect is an example of a

fluctuation which occurs inside the system. It was discussed in Sections

II-4 and II-7 that such fluctuation have a destabilizing effect. The

destabilizing effect which the space lag variation has in combustion

systems and in boiling systems has been already demonstrated in [48_ 52)

and [50_ 51] among others. Equation V-4 shows that_ at supercritical

pressures_ the space lag variation has a similarly destabilizing effect.

Furthermore_ the negative sign in the third term on the left hand side of

Eq. V-13 shows the destabilizing effect of the inlet velocity perturbation.

We have noted already that this effect stems from the density perturbation

in the "light" fluid region.

V.2 The Characteristic Equation

In view of the definitions of the inlet velocity perturbation and of

the space lag perturbation given by Eq. III-7 and Eq. IV-30 respectively_

we can express Eq. V-13 as

_ __"E,

+ G -- -----_ Fb e
& - ..,"L _- ..n.,

V-14



obtain the characteristic equation for the heated duct:

It can be seen that the characteristic equation is a third order polynomial

with two time delays. From the definitions of the influence coefficients

we have the following relations for the various terms which appear in

Eq..V-15.

- _, t _" _-
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It was discussed in Section II-6 that the characteristic equation

predicts the value of S as function of the pressure terms given by Eq.

'V-16 through V-22. In general s is a complex number$ = _ _ the real

part gives the amplification coefficient of the particular oscillation

mode,whereas the imaginary part represents the angular frequency

Since the original perturbation of the inlet velocity was assumedto be

of the form _l=_ j a given oscillating modewill be stable, metastable

or unstable depending on whether the real part of S is less_ equal or larger

than zero, i.e., whether O.<_ _=O or O.> O.

A general study of the flow behaviour entails an investigation of

conditions leading to aperiodic as well as to periodic phenomena. The

first pertains to the possibility of flow excursion whereas the second

pertains to the onset of flow osciliations. Following the standard pro-

cedure we shall study aperiodic phenomena by considering the case of

S = a with6_= 0. Again, following the standard procedure we shall study

periodic phenomena by setting 5=_go (a = 0 o_#O ) in the characteristic

equation. Such an approach will enable us to determine the stability

boundary which defines regions of stable and of oscillating behaviour in





VI. Excursive Instability

VI.I Derivation of the Stability Criterion

The study of excursive_ i.e.j of aperiodic instabilities is con-

ducted by considering the exponent 6 of the velocity perturbation to be

real_ i.e._ by letting the angular frequency _O of the disturbance be zex

It follows then from Eq. V-_ that for small values of _ , we have the

following relation:

$

VI-I

whence after rearrangement:

VI-2



___ = _: 2

Equation VI-2 predicts the value of the exponent S in terms of the

influence coefficients. Since the inlet velocity perturbation is of the

form of _ _?t
= _ and since the coefficient A* is positive and exponent

S is real_ Equation VI-3 indicates that the flow will be stable, i.e.,

the disturbance will decrease with time if B* is positive, thus from

Equation VI-2

VI-4

If B is negative then Equation VI-3 indicates that s will be real

and positive_ consequently any flow disturbance will be amplified

with time resulting in flow excursions. Substituting the definitions

for the influence coefficients given by Equation V-5 through Equation

V-II we can express Equation VI-4 in terms of steady state pressure

drops, thus

Vi-5
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Substituting Eq. VI-6 through VI-12 in Eq. VI-5 we obtain the stability

criterion:

VI-13

which can be expressed also in terms of the total mass flow rate W, thus

df_ Ap } d"f__w" + dar _ 0 Vl-14

For boiling systems, this simple criterion was first derived by

Ledinegg [24] using a different approach, it was analyzed further in

[25 through 47] and _51]. The results of this analysis show that this

"Ledinegg instability" can occur also at supercritical pressures. The

significance of the stability criterion given by Eq. VI-14, can be best

analyzed by considering the steady state _-_" relation for the heated

duct° This will be done in the section that follows.

VI.2 Significance of the Stability Criterion

If, for simplicity, we neglect the effect of the gravitational force



VI-16

VI-17

Vl-18

m

V1-19

The total pressure drop for the heated duct is obtained by adding

Eq. Vl-15 through Vl-19, thus

/ -, _ k__ ,_ ,__- .:.__



VI-22

It should be noted that Eq. VI-20 is applicable to subcritical as

well as to supercritical pressures. By assigning the proper expression

to (Ju'-/_), which we obtain from the equation of state, we can

differentiate the process of boiling at subcritical pressures from the

process of heat transfer at supercritical pressures. Thus, for boiling

at subcritical pressures we have from Eq. IV-15

I _-_-)_ - _+__
VI-24

whereas at supercritical pressures we obtain from Eq. IV-8

VI-25



It can be seen from Eq. Vl-20 that whether in boiling at subcritical

pressures or in heating at supercritical pressures the steady state

pressure drop in the heated duct has the samecubic dependenceupon the

total massflow rate. This important conclusion from analysis is indeed

supported by the experimental data reported by Krasiakova and Glusker [18)

for water in forced flow through a circular heated duct. Figure VI-I_

which is reproduced from [18)jshows that in boiling at subcritical

pressures (P = 140 bars) as well as in heating at supercritical pressures

(P = 226 bars) the pressure drop in the heated duct has the samecubic

dependenceupon the massflow rate. It could be anticipated therefore that

the system will have similar dynamic characteristics at these two pressure

levels. This is indeed the case as it will be shown later.

The significance of the stability criterion given by Eq. VI-D4 can be

best analyzed by plotting Eq. VI-20 together with the pump characteristic

on the same graph. Figure VI-2 shows such a plot together with three

possible flow delivery characteristics_ i.e., i) constant pressure drop

delivery system_ 2) constant flow rate delivery system _nd 3) delivery

system specified by the pump characteristics, The intersection of the
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VI.2.1 Constant Pressure Drop Supply System

The operating point for a constant pressure drop delivery system are

indicated by points i_ 2 and 3 in Figure VI-2. The stability criterion

given by Eq. VI'[4 indicates that operation at points i and 3 will be

stable whereas that at point 2 will be unstable. For example_ if a points

i and 3 the flow is slightly increased the pressure drop of the heated

duct increases_ i.e._ the "demand" curve of the system increases above the

"supply" curve of the delivery, consequently the flow will return to its

original value. Similarly_ if at points I and 3 the flow is decreased

the pressure drop of the delivery will be above that required by the

.......heated duct resulting in_'an increased flow and return to the original

operating point. However_ the operation at point 2 will be unstable with

respect to either a flow increase or a flow decrease. If the flow is

slightly increased at point 2 the external system supplies more pressure

drop than that required to maintain the flow. Consequently the flow rate

will increase until the new operating point is reached. Similarly_ if the

flow is decreased at point 2 more pressure drop is required to mafntain

the flow than is being supplied by the delivery system. Consequently



which in view of Eq. VI-20 becomes

r-

|

It can be seen from Eq. VI-26 that flow stability requires an in-

creasing pressure drop with flow rate. This is indeed the characteristic

of most flow systems. However_ the negative term in Eq. VI-27 indicates

that for boiling systems as well as for systems at supercritical pressures

the pressure drop may decrease with flow rate resulting in flow excursion.

Instead of the stability criterion given by Eq. VI-26 one can introduce

the coefficient of stability Sj apparently first proposed by Schnackenberg [2_

and defined by

_- VI-28

which in view of Eq. VI-20 and VI-27 can be expressed as



variation in the mass flow rate. It can be seen from Eq. VI-28 and VI-26 that

for stable flow S must be positive, thus

> © vl-30

VI.2.2 Constant Flow Delivery System

The operating point for a constant flow delivery system is given by the

!_tersection cf the pressure supply with pressure demand curves. It can be

seen fr_m Figure VI-2 that for such a system

" vl-3l

i

whence Eq. VI-IA indicates that for such a system no flow excursions are possible.

VI.2.3 De!iver¥ Specified by pump Characteristics

the operating points for a system whose flow delivery is specified by

the characteristics of the pump are shown as points 4, 5 and 6 on Figure VI-2.

"'-Ingu=exactly the same arguments as those used in discussing a constant pressure

drop delivery system, it can be shown tbmt the operating points 4 and 6 are

stable whereas operazlng point 5 is unstable with respect to small flow



VI.3 The Effects of Various Parameters and the Methods for Improving Flow Stab:

The effects which various parameters have on the propensity for flow

excursions can be evaluated by examing Eq. VI-14_ VI-21_ VI-22_ VI-23 and

T_

E_. VI-27. It can be seen that the variation of any parameter which tends

to increase the value of the coefficient b given by Eq. VI-22 will have a

destabilizing effect. Consequently_ increasing the value of the exit pressure

drop coefficient M e is destabilizing whereas the flow can be stabilized

by a high inlet pressure drop_ i.e._ by appropriate orificing. In view

of Eq. VI-24 and VI-25 it can be also seen that increasing the system

pressure will have stabilizing effect whereas a decrease in system pressure

has the opposite effect. Furthermore_ the flow can be also stabilized by

changing the pump characteristics.

Before closing the discussion of excursive instabilities it will be

instructive to illustrate the destabilizing effect of the compressibility

of the fluid in the heated duct. It was discussed in Section 1.3 that the

instability mechanism which is analyzed in this paper is based on the

effects of time lag and of density variations in the heated duct.

For simplicity we shall consider only the effect of the frictional

pressure drop in a system with zero inlet subcooling_ i.e._ with _L_=o

For such a system Eq. III-20 shows that the space lag is also zero. The



If we insert in Eq. VI-32 the expression for the averagevelocity <_ given

by Eq. IV-35 and since the space lag is zero_ we can express the mean

specific volume "0_. as

Vi-34

or in view of Eqo IV-21 as

whence

m

|

_. _I' _ _r_ Vi-36

Since Eq. VI-32 and Eq. VI-35 show that both _ and "br_. are

functions of W we can express the stability coefficient defined by

Eq. VI-28 as



(_/d_) is given by Eq. IV-15 or Eq. IV-8 depending on whetherwhere

we are interested in the subcritical or in the supercritical region_

It can be seen from Eq. VI-37 and Eq. VI-30 that for a system where

the meanspecific volume does not dependon the mass flow rate the flow

will be stable. For such incompressible flow system the coefficient of

stability S has a value equal to 2. This is also the maximumvalue of S

becausewhenthe fricition factor f in Eq. VI-32 is a function of the

Reynolds numberthen Eq. VI-28 showsthat S will have a value less than

two. For example_for laminar flow it will have a value equal to unity.

For a boiling system at subcritical pressures or for a process if

heating at supercritical pressures Eq. VI-38 showsthat the value of S

can becomenegative becauseof the compressibility of th# fluid. For

such systems Eq. Vl-30 showsthat the flow maybecomeunstable.

In closing it should be emphasizedthat the density effect per se_

can lead to excursive flow instabilities° Oscillatory flow instabilities

results from a combinedeffect of time lag and of density variation. This

will be analyzed in the two chapters that follow.





VII. Oscillatory Instability at Low @ubcooling

I

VII.I The Characteristic Equation and the Stability Map

In this chapter 3 and in the following one we shall investigate periodic:

i.e._ oscillatory flow phenomena. For this purpose we shall assume that the

exponent _ of the inlet velocity perturbation is given by _ =i_where the

angular frequency _ 3 is a root of the characteristic equation, i.e._ of Eq.

In this chapter we shall consider the case of low subcooling, whereas, in the c

that follows we shall consider the case of high subcooling.

For the case of low subcooling the characteristic equation_ i.e._ Eq. V.

can be simplified by recalling that for low subcooling the time lag %b, given

Eq. 111-19 will be short. Note, that the total transit time _-_i _ which a[

appears in Eq. V-15 need not be short.

i,e._

i

This can be seen by considering Eq. IV-

i

which can be also expressed as:

_rrT _9

|

2



m

Consequently, for short a space lag A , and _ short time lag _'b , the transit

time may be long for sufficiently long ducts and/or for low inlet velocities°

It can be seen from Eq. VII-3 that the effect of time lag will be small if

which for subcritical pressures implies

Vll-5

whereas, at supercritical pressure this inequality implies:

VII-6

When the time lag _ is shortj then in Eq. V-15 the exponential term

which contains -[&, can be expanded and the characteristic equation reduces

to



using this newvariable, Eq. Vll-7 can be expressed as

VII-9

where the dimensionless coefficients a_ b and c are given by:

_=-
I
l
II

0
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VII-IO

VII-II

VII-12

and where the total transit time _'E is given by Eq. VII-7. The coefficient

a_ b and c can be expressed also in terms of the pressure drops, thus

I



Equation VII-9 is a second order exponential polynomial with one time

delay. Stability maps for such polynomials have been recently presented by

Bhatt and Hsu C6_ 64]. One such map is shown in Figure VII-I_ it is in

the c-b plane with the coefficient "a" as a parameter. The lines for which

the coefficient "a" is constant are stability boundary curves. For example,

for given values of the coefficients "b'_ and "a", the stable region of variation

for the coefficient "c" is shown by the line segment AB. The segment CD is another

stable range for constant values of "b" and of "a".

Figure VII-I is the §tability map which can be used to differentiate

the regions of stable operation from the region of unstable 3 i.e., of oscillatory

flow in the heated duct. However_ because of the complicated nature of the

coefficients "a", "b"_ and "c" which appear on this map_ it is rather difficult

to discuss and analyze the effects of the various parameters. It is desirable,

therefore, to simplify the characteristic equation in order to obtain simple

stability criteria. This will be done in the section that follows by neglecting

the inertia terms in Eq. VII-7.

VII.2 Stability Criterion for the Case of Small Inertia

VII.2 The Characteristic Equation

If we neglect the inertia terms F I and F2 in Eq. VII-7, the

characteristic equation reduces to its simplest form given by



and __
VII-18

It is important to note that a characteristic equation of the form of

a first order exponential polynomial with one time delay describes the onset

of "chugging" combustion instabilities as shown by Crocco and Cheng [48].

Since Eq. VII-16 is of such a form 3 we can use the results of Crocco and Cheng [48]

to analyze the flow stability in this problem. The difference between the present

problem and that of combustion is the physical meaning of the coefficients A and B.

In this problem they depend on various pressure drops in the system which were

obtained from the momentum equation, in the combustion problem the coefficients

are obtained from the continuity equation and depend_ among others_ on the process

of combustion.

We note also that the results of Stenning [62] can be expressed in terms

of a characteristic equation of the form of a first order exponential polynomial

with one time delay. However_ since Stenning _62] did not formulate his analysis

of boiling instabilities in terms of the momentum equation_ the coefficients in

his characteristic equations do not depend upon the pressure drops.

VII.2.2 Unconditional Flow Stability
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Because of its importance_ we shall define this ratio as the Stability Number

In view of Eqo VII-17 and VII-18_ it can be expressed as

m

=-

m

-v.

F_

This stability criterion can be put also in the form of

VII-21

whence upon inserting the values for the influence coefficients in Eq. VII-27

we obtain the inequality which must be satisfied for unconditional flow stabi]

thus

VII-22



m

If we now approximate <_ g_ _3 we can express Eq. VII-23 as

E
i

Defining by _ _@ the sum of the pressure drops in the "heavy" fluid region.

VII-25

and by 2_ the sum of the frictional and of the exit pressure drops in the

"light" fluid region

we can express Eq. Vii-24 as

whe nce

,. r_II T% ,,_,'.̂ ,



This inequality can be expressed also in terms of the total massflow rate and
6

of the total heat flow _ . Thus

m

Againj we differentiate the process of boiling at subcritical pressure from the

process of heating at supercritical pressures by using the appropriate equation

of state_ thus at subcritical pressure we use Eq. IV-15_ ioe._

VII-31

whereas at supercritical pressures we use Eq. IV-8_ i.e.j

The implication of Eq. VII-30 will be discussed in Section VII.3.

VII-32

VII.2.3 Conditional Stability

Following again Crocco and Cheng [48_we can determine the relation

between the critical transit time _ and the critical frequencies'_c correspo



and

B VII-35

where the coefficient B_ given by Eq. VII-18 can be expressed in terms of the

pressure drops thus

where

VII-37

and

_, u2

J
VII-38

The stability number Ns, given by Eq. VII-20, becomes when expressed in

terms of the pressure drops:



The critical frequency _ is obtained from Equation VII-34 and Equat_

VII-35_ thus

VII-40

whereas_ the critical transit time _..

thus

is given by Eq. VII-35 and Eq. VII-4(

I - ; VII-41

As discussed by Crocco andCheng [48_ if the inequality given by

Eq. VII-19 is not satisfied_ then stability is still possible if the angular

frequency of the perturbation and the transit time satisfy the following

inequalities

_0"> _¢ VII-42

and

Vii-43



The preceding results can be plotted against the stability numberN
8

given by Eq. VII-20_ i.e. 3 by Eq. VII-34. For this purpose we shall define

also the period of the oscillation by

T

2_

C.J(.

VII-45

We can form now the ratio of the critical transit time to the period

and express it as function of the stability number Ns3

and Eq. VII-41 we obtain

thus from Eq. VII-45

_I_ cot(r_-r]= I I -a
VII -46

The critical angular frequency can be also expressed as functions of

_s_ thus from Eq. VII-40 s

= VII-47

Similarly 3 by means of Eq. VII-41 we can express the critical transit

:ime as function of Ns3 thus
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VII.3 Effects of Various Parameters and Methods for.lmproving Flow Stability

The effects which various parameters have on the propensity to induce flow

oscillation at low subcooling can be evaluated by examining Eq. VII-22 or

Eqo VII-30. It can be seen that the variation of any parameter that tends to

decrease the positive value of the left hand side of these equations has a

destabilizing effect. For example, increasing the various pressure drop terms

in the "light" fluid region has a destabilizing effect. Similarly, an increase

of subcooling tends to destabilize the flow. Vice versa, an increase of the

inlet pressure drop or a change of the pump characteristics will stabilize the

flow.

Although the preceding results have not yet been tested against experlmental

data, the form of the simplified stability criterion given by Eq. VII-29, seems

to be correct. This statement is based on a comparison of Eq. VII-29 with the

empirical criterion for predicting boiling instabilities recently proposed by

In the nomenclature of this paper, their criterion isSerov and Smirnov (66).

given by

VII-49
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If we neglect the effects of compressibility in Eq. VII-49 and compare

to Eq. VII-29 and VII-31_ it can be seen that Eq. VII-49 is incorporated in

Eq. VII-29. We note also that this latter equation is a simplified form

of Eqo VII-23; i.e. of Eq. VII-9 which are therefore more general and

completeo

Further experimental evidence that gives support to the form of

Eqo IV-29 is shown on Figure VII-3 which is reproduced from the paper

--m

by Platt and Wood _I_/. It can be seen from this figure that either

increasing the power input and/or decreasing the mass flow rate has a

destabilizing effect. The same results are predicted by Eq IV-29.

Perhaps the result of greatest significance revealed in the present

investigation is the similarity between the characteristic equations for

predicting "chugging" combustion oscillations and the characteristic

equation for predicting low frequency flow oscillations in heated ducts

at near critical and at super-critical pressures. Since it is well

known (see for example[48] ) that "chugging" combustion instabilities can

be stabilized by an appropriate servo-control mechanism 3 the results of

this investigation indicate that low frequency flow oscillation at near

critical and at supercritical pressures may be also stabilized. This

important conclusion is demonstrated on Figure VII-2 which shows also the
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The effects which the variations of the various parameters have on

the flow stability can be evaluated from Figure VII-2 by considering

whether the variation results in an increase of the stable region. For

example_ it can be seen from Figure VII-2 that for a constant value of Ns

an increase of the delay time has a destabilizing effect because for

sufficiently long delays_ will become larger than _. We note that

this quantitative conclusion is in agreement with the qualitative des-

cription of the destabilizing effect of the time delay presented in Section

11-4. It can be also seen from Figure VII-2 that increasing the frequency

of the inlet perturbation at a constant value of Ns_ has a stabilizing

effect because for sufficiently high frequency g0 will become larger

than 60_ . Furthermore_ Figure VII-2 shows that an unstable flow; i.e.j

a flow for which _L_ and _%> _%$can be stabilized by increasing the

value of the stability number Ns.

We close this section by observing that the foregoing conclusions

and results are new and have not yet been verified against experimental

data. If confirmed_ then the results of this study provides a method

whereby stable operation can be insured on an intrinsically unstable

region.
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Vlll. Oscillatory Instability at High Subcoolin$

VIII.I The Characteristic Equation and the Stability Criterion

We shall consider now the case of high inlet subcooling which implies a

iong time lag _4and a long space lag T . For such system Eq. VII-3 indicates

that the transit time and the time lag will be of the same order of magnitude.

Since both time delays are long, we shall neglect the exponential terms in the

characteristic equation given by Eq. V-15, which reduces then to

VIII-I

which can be rearranged and expressed as

6 -+ $
I F_-tF,,-n (£_r:.)-.qr_
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VIII-5
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It can be seen that the characteristic equation is a cubic equation of the

form o f

VIII-7



whence upon separating the real and the imaginary parts we have

CO _- d_

cu
Vlll-9

and

CO -_

5
VIII-IO

CoNsequently for oscillations to be possible the coefficients a_b,c and

d in Eq. VII-9 and Eq. VII-10 must satisfy the following relation:

c d
Vlll-ll

whencej the values of the influence coefficients must be such as to satisfy th

following expression:

A _g -+-r-(F_,r,_n;,)
Vlll-12



Therefore, the flow will be stable if

*at -C- - f -r - r-,_).>o VIII- 14

In view of Eq. VIII-5, this inequality can be expressed also as:

m
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Vlll-15

For oscillatory flow, Eq. VIII-13 and Eq. VIII-9 indicate that the angular

frequency will be given by

VIII- 16

which, when expressed in terms of the influence coefficients, becomes

VIII-17
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Vlll.2 Effects of Various Parameters and Methods fg[ Improving Flow Stability

The effects of the various parameters can be evaluated by examining the

inequality given by Eq. VIII-15. It can be seen that any variation which tends

to increase the value of the left hand side of this equation will have a stabil:

effect. Thus, the flow can be stabilized by increasing the pressure drops in

the "heavy" fluid region, whereas it will be destabilized by increasing the

pressure drops in the "ligh@'fluid region.

The effect of subcooling can be evaluated by comparing Eq. VIII-14 and

Eq. VII!°I5 with Eq. VII-20 and Eq. VII-39. Since the velocities in the "light'

fluid region are higher t5mn the inlet velocity it can be seen from such a

comparison that the inequality applicable at high subcoolings, i.e. Eq. VIII-14

is less restrictive than that corresponding to low subcoolings, i.e., than

Eq. VII-20. Consequently, the flow is more stable at high subcoolings.

However, since Eq. VII-20 indicates also that an increase in subcooling destabil

the flow, we conclude that this destabilizing effect must go through a maximum

at intermediate subcoolings. For boiling systems, this conclusion is in agree-

ment with the experimental results of Gouse (67) who was apparently the first

to notice this effect. At super critical pressures, experimental data, which

could be used to test this conclusion, are not yet available.

I
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IX. DISCUSSION

The instability mechanism investigated in this paper was based on the

destabilizing effects of time lags and of density variations in the heated

duct.* It was shown that_ in the near critical and in the supercritical

region_ these destabilizing effects can induce flow excursions as well as

flow oscillations.

The characteristic equation_ i.e._ Eq. V-15_ which predicts the onset

of these instabilities is given by a third order exponential polynomial

with two time delays. Because of its complex nature this equation was not

solved at this time. Instead_ simplified stability criteria were sought

and derived by assuming that the inlet subcooling was either low or high.

This approach seemed preferable for several reasons.

First_ the simple stability criteria are more instructive and helpful

for gaining an understanding of the essential nature of the instability.

Two_ the result shows that the dominance of a particular parameter re-

sults in a particular angular frequency of oscillations (see Eq. VII-40 and

VIII-17). Consequently_ the cause of instability can be determined from a

trace of the flow oscillation.



Finally 3 simplified stability criteria such as Eq. VI-203 VII-223

VII-42 and VIII-%5 are more amenable to a qualitative study of the effects

which variations of the various parameters may have on inducing or on pre-

venting flow excursions and/or flow oscillations. Indeedj only if the

results from such a study are in agreement with experimental observationsj

a detailed quantitative solution of the more complicated characteristic

equation can be justified.

It was discussed in Sections VI-2j VII-3 and VIII-2 that the pre-

dictions based on the simplified stability criteria are indeed in qualitative

agreement with the experimental data. This agreement warrants therefore a

more complete study of the characteristic equation together with a quantita-

tive comparison with the experimental data.

Last but not least the simple criteria are most useful in indicating

the improvements and changes in the design or in the operation of the system

which would insure stable flow. Several such improvements were discussed

in Sections VI-23 VII-3 and VIII-2. It was noted there that the results of

this study indicate that low frequency thermally induced flow oscillations

in the near critical and in the supercritical pressure region 3 could be
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Appendix A

The Near-Critical Thermodynamic Region

The success of an investigation concerned with predicting or in-

terpreting the behaviour of a thermo-dydrauli¢ system depends on the

availability and on the accuracy'of data giving the values of thermodynamic

and transport properties of the fluid in the region of interest. It is

the purpose of this appendix to summarize, briefly, the status of present

understanding of thermodynamic phenomena that take place in a region near

the critical thermodynamic point. For'additional discussion, the reader

is referred to the extensive reviews by Rice (AI) and by Hammell (A2).

Consider a fluid at a pressure slightly above the critical pressure

flowing through a heat exchanger. If the temperature of the fluid at the

entrance is considerably below the critical temperature, i.e., T<%'T , the
C

fluid will have a density close to that of a liquid whereas at the exit,

if the fluid temperature is considerably above Tc, the density will ap-

proximate that of a perfect gas. Consequently, in passing through the

heat exchanger the fluid will undergo a change of properties from a liquid-

like fluid at the entrance to a gas-like fluid at the exit. Since the



the heat of vaporization, as well as the surface energy_ all vanish.

There is no general agreementas to the structure of the mediumand

of the mechanismof phase transition in the critical and in the supercritical

region. Different explanations and descriptions are advancedby different

authors.

Someauthors like Rosen (A3) and Semenchenko(A4) analyze the thermo-

dynamic characteristics of a mediumin the supercritical region by assuming

an equation of state like _h_ Van der Waals' or the Dieterici equations.

• - _ =I ,A5_ describe the fluid in the neighbor-H1r=c_f__der, Curtis and Bird _ "

hood of the critical point as consisting of a large numberof clusters of

molecules of various sizes. The system can be idealized by assuming that

the density can be described by a distribution function which has for its

two limits the densities of the two phases. The fluctuation in density,

which can be expected from the theory of fluctuations, becomesvery large

in the vicinity of the critical point. These large fluctuations and the

formation of molecular clusters in the neighborhood of this point result

in a large increase of the specific heat a_ constant volume.

Mayer and co-workers (A6) propose a theory of condensation based on

the cluster theory of imperfect gases from which they predict the existence



A great numberof authors distinguish two phases in the supercritical

region: a heavy, liquid-like phase and a light, gas-like phase. The

difference between their results stems from the different approaches used

to locate the boundary between the two phases and from the different

descriptions of the characteristics of the phase transition.

In a preceeding section we have discussed already Goldman's (A7-AS)

descriptions of the supercritical region and of the similarity between the

heat transfer and'flow processes at supercritical pressure and those that

take place at subcritical pressure during the process of boiling. However

Goldmandid not formulate, quantitatively, the problem nor did he say how

and where to locate the boundary or the region between the liquid-like and

the gas-like phase.

Following Goldman,Hendricks et al (Ag) consider "boiling-like"

phenomenaat supercritical pressures and, in analogy with boiling, they

introduce a specific volume for the fluid of the form of Eq. AI.

_. _f+ x
g

In place of the quality they introduce a weighting function for the heavy



In the subcritical region various thermodynamicproperties such

as the specific heat, the compressibility, the coefficient of thermal ex-

pansion and others changediscontinuously or reach a maximumvalue at the

coexistence, i.'e., the saturation line. This line can be therefore looked

upon as the locus of points for these discontinuities or maxima. Conse-

quently, numerousauthors consider the extension of the saturation line

into the supercritical region to be the line which is the locus of points

where the thermodynamicproperties listed below reach a maximum:

_o-r "o-P ._ T 2
T T

\gv /

(A-2)

= 0 (A-3)

(A-4)

= 0 (A-5)
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m

F.

show that this is not the case but that for a given supercritical pressure

different thermodynamic properties reach a maximum value at different

temperatures. Thus, for each of the thermodynamic properties, i.e.,

specific heat Cp, the coefficient of thermal expansion, etc., there is a

different line which represents the locus of the maxima. This raises the

question which of these lines can be regarded to be the extension of the

saturation line in the supercritical region, i.e., which of these lines ca

be considered as the boundary between the liquid-likeand the gas-like

phase.

Plank (A-20) and Semenchenko (A-21) consider the line along which

(A-7

to be the extension of the saturation line in the supercritical region.

Eucken (A-13), however, takes the curve represented by Eq. A-2 for this

extension; whereas numerous authors (A-8, A-9, A-22 - A-25) take Eq. A-3.

Of particular interest to the analysis of this paper are the results

reported in (A-14, A-17, A-19 and A-16) which will be therefore discussed



nuclei of a phase within a homogeneousphase. In approaching the saturation

line the fluctuations increase and "micro-heterogeneities" appear in the

macroscopic, homogeneousphase. This marks the beginning of the "pre-transi-

tion region" which is characterized by the fact that various thermodynamic

properties exhibit variations which becomemore pronouncedas the saturation

line is approached. This accounts for the anomalouseffects of the proper-

ties in the vicinity of the saturation line. At the saturation line the

properties change in a discontinuous, fashion which is a characteristic of

phase transitions of the first order. As the pressure is increased the

effect of heterogeneous fluctuations increases whereas the effect of phase

change, i.e., of the discontinuous change of properties becomes less

important and disappears at and above the critical point. Since the change

of phase at subcritical pressure is characterized by an obsorption of energy

and an expansion of volume the transition at supercritical pressure should

be characterized by the maximum values of c and of the thermal expansion,
P

, . See Figures A-I and A-2 which show these propertiesi.e. of ( _v/'_T)p

for oxygen at supercritical pressures. However, the authors of (A-19) show

from experiments that at a given pressure the two maxima do not occur at
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which is valid for non-polar liquids when P/Pcrit 1.5. In the above

equation, R is the gas constant whereas c is the specific heat for an
Pg

ideal gas. This equation shows that the value of the maximum c decreases
P

as the pressure is increased. The temperatures where these maxima occur

were correlated by

!
E

I
i

- _1

This temperature, denoted here by T , is often referred to in the litera-
pc

ture as either the pseudo-critical temperature or the _ransposed critical

temperature°

Both Sirota (A-19) and Kaganer (A-18) show that the locus of the maxi-

mum values of c along isobars, i.e., Eq. A-3, is the extension of the sat-
P

uration line in the supercritical region.

i

Urbakh (A-17) also considers the effect of heterogeneous fluctuations

at subcritical and supercritical pressures. He shows that as the temperatt

is increased and the surface tension decreases the heterogeneous fluctuati¢

increase and reach a maximum at the critical point. The location of the

critical point depends on the surface tension; moreover, it can be changed

by introducing surface active agents. The critical point divides two regIc



in the vicinity of the saturation line. This is shown in Figure A-3 which

is the volume-temperature plane for oxygen. At a subcritical pressure,

say at P = 0.9, the line i' - 2' is the phase transition of the first
r

order occurring at a constant temperature. The effect and magnitude of

the fluctuation in specific volume in the two pre-transition regions is

shown as the lines I i' and 2 - 2'. The fluctuation I - i' is caused by the

formation of vapor nuclei in the pre-transition region of the liquid.

Similarly, 2 - 2' are the fluctuations caused by the formation of liquid

nuclei in the pre-transition region of the gas. It can be seen from this

Figure that at low pressures in the subcritical region the effect of

fluctuation is negligible when compared to the phase transition of the

first order. For example, at P = 0.5, they are almost absent. Increas-
r

ing the pressure increases the effect of heterogeneous fluctuations which

reach a maximum at the critical point. At this point and above it the

phase transition of the first order vanishes so that only the effect of

heterogeneous fluctuations remains. Urbakh notes further than with the

phase transition and the fluctuations are associated energy requirements

which can be determined from the T - s or v - s diagrams shown on Figures A-4

and A-5. At low pressure the only energy required is heat of vaporization

for the phase transition of the first order, thus
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Frenkel (A-14, A-26) considers two variations: a transition of the

first order at subcritical pressure and a transition of the second order at

supercritical pressure. The first, Characterized by discontinuities of

properties, is described by Clausius-Clapeyron's equation:

dP hf_ .

d--_= To (v - vf) (A-12)
g

and takes place at a cgnstant temperature To, The phase transition of

the second order takes place over a temperature interval A T = T2 - TI,

in which the properties change continuously. In this temperature interval

both Cp and (_v/_T)p reach a maximum. FiguresAlandA2 show these varia-

tions for oxygen at three supercritical pressures. As a generalization

of the transition of the first order Frenkel formulates the equivalent

energy of transition for the second order transition_ thus

j T
_ = Ttc(S 2 sI) =- A Cp dT (A-13)

T I

J
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Eq. A-13 and Eq. A-14 represent the additional increase of volume and the

additional heat absorbed in going from the liquid-like state to the gas-

like state at constant pressure. In place of Clausius Clapeyron's equation

Frenkel uses the equation derived by Ehrenfest (A-27) to describe transiticn

of the second order at the "lambda point" of helium and at the "Curie point"

of feromagnetic metals_ thus

dP = _ c
__ m (A- 15 )

P

where _c m and _i(_v/_T)p are the maximum values of Cp and of ( v/ T)p

above the dashed lines in FiguresAl andA2. Various criticisms which have

been made with respect to Ehrenfest e_uation are discussed in (A-28)o Also,

various authors (A-18, A-19) criticize the use of Eq. A-15 for the supercrit

region because the temperatures where Cp and (_v/_T)p reach their

respective maximum values are not the same. Consequently, the value of T
tc

in Eq. A-15 is somewhat arbitrary.

Semenchenko (A-4, A-16, A-29) considers the medium in the supercritical

region to consist of two phases which are separated by a region in which the



However, since in the supercritical region there is no discontinuoUs change

of volume and of entropy, Semenchenkonotes that Eq. A-10 and A-15 must be

modified and replaced by:

T2

J dT (A-17)
_ = Cp

TI

and

W z

(A-18)

For additional discussion of critical phenomena the reader is referred

to the extensive reviews by Rice (A-l) and by Hammell (A-2).

From the preceding review of the present understanding of thermodynamic

phenomena in the supercritical region we can make the following conclusions:

I) There is no general agreement as to the structure of the medium

and of the mechanism of phase transition in the critical and super-

critical region.

2) There is a general agreement that large variations of density and
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5) There is no general consensus as to the nature of phase transition

at supercritical pressures and of the energy required to bring it

about. Three different methods for evaluating this energy of

transition have been proposed: I) the graphical method of

Urbakh (A-17) resulting in Eq. A-II; 2) the second order transitiom
i_

proposed by Frenkel (A-14, A-26) given by Eq. A-13, and Eq. A-15; a

3) the pseudo transition region proposed by Semenchenko (A-4, A-16,

A-29) given by Eq. _ and Eq. A-17. By examining the proposed methc

and equations, i.e., Eq. A-II, Eq. A-15 and A-17, it can be seen tb

these different methods will yield different values for the transit

energy.

It is evident from the preceding results that the success Of any analy_

concerned with the mechanism of flow oscillations and of heat transfer at
!

supercritical pressures will depend to a great extent upon the ability to

describe more accurately the thermodynamic state of a fluid and the transi-

tion phenomena that take place at supercritical pressures.
,=

. ; _ o =
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Appendix B

The Steady State Pressure Drop _

In this Appendix we shall derive an expression for the steady state

pressure drop of a fluid whose properties change from a liquid-like at the

entrance to a gas-like at the exit of the heat exchanger. The derivation

and the resulting flow excursion criterion applicable to fluids at critical

and supercritical pressures were first derived by the writer in the Second

Quarterly Progress Report. They are reproduced here for reasons of completeness.

The pressure drop across a heated length L is the sum of the acceleration,

pressure drop, the frictional pressure drop and the pressure drops across:

the inlet and exit flow restrictions. Since the pressure drop depends on

the fluid, it becomes necessary to examine first property changes along the

heated duct.

B.I The System - Three Re_ion Approximation

The system analyzed in this Appendix is shown in the Figure B-I.

A circular duct is uniformly heated at a rate of Q, over a total heated



L_ _r
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i

volume from. .a liquid-like state to a gas-like state occurs gradually over

an enthalpy interval.

In order to simplify the problem, we shall assume that the entire

transformation can be approximated by considerding three re_ions. In the

first region of length if, between stations O and O in Figure B-I, the

heavy clusters resemble a liquid. In this region the specific volume of

the fluid is constant having a value of vf. We shall assume that the com-

plete transformation, from heavy to light clusters, takes place within the

transition length it, i.e., between st'ations @ and @ . In this transitiol

region the specific volume of the fluid changes from a Value of vf to a value

of Vg 2 The enthalpy change associated with this expansion is given by

_L, --_l,-iL In the third region of length ig, the light clusters

resemble a gas. The specific volume of the fluid in this region can be

approximated by _hat of gas and, in particular, by that of a perfect gas.

It is apparent from the discussion in Appendix A that the initial and

the final conditions of the transition region, i.e., the conditions at stage (

and @ respectively, will depend upon the model 'selected for describing

the pseudo-phase transition in the supercritical region. This follows from



Consequently, we shall assumethat both the friction factor and the heat trans-

fer are constant. The first assumption is quite reasonable if the flow remains

turbulent throughout the duct. The limitation of the secondassumption may

becomesignificant if variations of transport properties in the transition .

region have an important effect on the stability. We note, however, that

both assumptions can be removed permitting an extension of the analysis to

consider the effect of variations, other than density, on the initiation of

flow oscillations.

B.2 The Frictional Pressure Drop

The frictional pressure drop in the system is gfven by the sum of the

frictional pressure drops across the segments if, it and ig and the pressure

drops across the inlet and exit flow restrictions, thus

B-I

For a constant friction factor f, the pressure drop across a segment

of length i is given by

e . , ,._. "_ a
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Consequently, in order to evaluate the frictional pressure drops for

the three segments it is necessary to evaluate the specific volume for each

segment. This can be done by relating first the specific volume to enthalpy

and then to express the enthalpy in terms of the heated length. This latter

relation can be obtained from energy considerations.

Denoting by Q, the total rate of energy addition to the system and by

_ I

the constant heat flux density, we have for a duct

where T ' is the heated perimeter.

0

L

where the total length is given by

It follows from Eq. B-4 that

B-5

B-6



and in view of Eq. B-5 we obtain

_L W_ _= _} B-9

Substituting Eq. B-4, B-3 in Eq. B-2, we obtain the pressure drop across

a heated segment where the enthalpy of the fluid changes from i to i + _i,

thus

!

For a three region approximation the relation between v(i) and i

B-10

is shown in FLgure B-I. We shall consider now each region separately.

a) The Liquid-Like Region

In this region the specific volume of the fluid is constant and equal

to vf (See Figure B-l). In the segment of length If, the enthalpy of the

fluid increases from i_ to i2. The frictional pressure drop across If be-

comes then

_,_-_L (-_---_I_-_- _ [_, _ _
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Denoting by _g_,l=m L -L 2 the change in enthalpy, the frictional

pressure drop in the transitional region then becomes

B-13

c) The Gas-Like Region

In view of the assumption that in this region the fluid has the prop-

erties of a perfect gas we have, for a constant pressure process, the fol-

lowing expression for the specific volume

B-14

Inserting this expression in Eq. B-IO we obtain

B-15

The change of enthalpy_3 2 , can be expressed also in terms of the total

heat input thus from an energy balance



!
=

B.3 The Inlet and Outlet Pressure Drops

.Denoting by ki a numerical coefficient that takes into account the

geometry of the restriction and of other losses like vena contracta etc.,

we have the inlet pressure drop

B-18

Similarly, we define by ke a numerical coefficient that accounts

for the geometry and the losses at the exit. The exit pressure can be then

expressed as:

B-19

which, in view of Eq. B-14 and B-16, can be also written as:

B-20

B.4 The Acceleration Pressure Drop



f_

! •

a

then

A
B-23

The total acceleration pressure drop required to accelerate a fluid of

specific volume vf at the inlet up to the exit where it attains a specific

volume Vg 3 is given therefore by

Z

_ = (__) (v_--_) _-_4

i
I
|

!

Inserting Eq. B-14 in Eq. 24 we obtain

or in view of Eq. B-16 we have

B-25

,

!

I
i

B-26



where the coefficients a, b and c are given by

_Li_ _ (_ _ L

-I- Z 7_-I'

B-28

4,"
B-29

B-30

The form of Eq. B-27 is relevant to the present problem because it shows

that, for some operating conditions, the pressure drop may decrease with



L

shown in Fig. B-l, the problem can be further simplified by considering a

two-region approximation indicated in the sketch below

/

Two-Region Approximation

&

In the two-region approximation the transition region shown in Fig[ B-I

and B-2 is neglected, i.e., i t = O, i 2 = i{, _292_ = vf. It is assumed,

therefore, that the change from a liquid-like to a gas-like fluid occurs in-

stantaneously in a plane perpendicular to the flow when the enthalpy reaches

a value of i_ indicated on _h_ _rh _h_,_



the fluid behaves as a gas. Therefore, the transposed critical temperature

T , can be regarded as the boundary between the liquid-like and the gas-like
tc

states. It was discussed already in Appendix A, that both Sirota (A-19)

and Kaganer (A-18) have shown that this temperature is the extension of the

saturation line in the supercritical region. Figure A-I in Appendix A

shows that the transposed critical temperature increases with increasing

values of reduced pressure. It can be concluded therefore that the value

of enthalpy corresponding to this temperature and to the transition point

shown in Fig. B-2 will also increase with increasing reduced pressures.

For a two-region approximation the form of Eq. B-27 remains unchanged,

however, the coefficients a, b and c given by Eq. B-28 and B-29 and B-30

reduce to:

B-31

B-32



which we obtain by setting _i_2 = O, _yfg = 0, Vg20 = vf in Eq. B-28,

B-29 and B-30.

As noted by Dr. Fleming the use of the two-region approximation simplifi_

considerably the form of the coefficients a, b and c. The three region

approximation retains however a closer similarity with phenomena that take

place at subcritical pressure. The transition region shown in Fig. B-I can

be regarded as corresponding to the boiling region at subcritical pressures.

The liquid and the gas region in Fig, B-! would then correspond to the pre _

heating and to the superheating region in a once-through boiling system

where the liquid at the entrance is subcooled and the steam at the e_it is

superheated. We have noted alreadK in Appendix A that the enthalpy change

_ may be considered as being equivalent to the heat of vaporization

hfg.

The selection of either the two or three region approximation should

be determined by the desired simplicity and accuracy. The important result

is however the fact that, because of the negative term on the right-hand side

of Eqo 27, there exist a possibility of a decrease in pressure drop with

increasing flow in the supercritical thermodynamic region. It was shown

in the body of the report that such a pressure dron v_ flow r_]_on _n
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Appendix C

The upper and lower bounds of the integrals

The integrals given by Eq. IV-94 , IV-IOI and IV-ill can be all

expressed in the form of

T = x_ _ ._' JI--_}l C-1

which integrates in

where K is a coefficient and m an exponent. For example, the

integral given by Eq. IV-lll is

t

iS

C-2

C-3



However_ in view of Eq. IV-34 and IV-28 we have

C-4
|

and

C-5

m

C-6

whence we can express Eq. C-3 as

By comparing Eq. C-7 with Eq. C-I it can be seen that they are

of the same form.

C-7



which, after somerearrangement, can be expressed in the form of

Eq. IV-Ill, thus

"51s.L.

C-9

In order to obtain the upper and lower bound of Eq. IV-94,

IV-101, IV-Ill we note that Eq. C-I can be written as

]7-- C-10

i

where F is the mean value of F given by

_-_

whence by the mean value thereom

_-_ L_ll_JJ tm g

C-ll



which together with Eq. C-IO yields the upper and lower bounds given in

Eq. IV-95j IV-105 and IV-I163 thus

C-13

For example3 from Eq. C-7 and Eq. C-12 we obtain

C-14

since

]s/n

it can be seen that Eq. C-14 can be put in the form of Eq. IV-II6.

C-15


